scholarly journals The Effects of Fire on Coarse Woody Debris in Rocky Mountain Coniferous Forests

Author(s):  
Dennis Knight ◽  
Daniel Tinker

Primary productivity, the accumulation of nutrients, and other important ecosystem processes are largely dependent on the mineral soil organic matter that has developed during hundreds or thousands of years. In forest ecosystems, the decomposition of coarse woody debris, woody roots, twigs, leaves and micro-organisms is a primary source of this organic matter. Large quantities of coarse woody debris are typically produced following natural disturbances such as fires, pest/pathogen outbreaks, and windstorms, which make a significant contribution to the formation of soil organic matter (SOM). In contrast, timber harvesting often removes most of the coarse woody debris (CWD), which could result in a decrease in the quantity and a change in the quality of mineral soil organic matter.

Author(s):  
Dennis Knight ◽  
Daniel Tinker

In forest ecosystems, the decomposition of coarse woody debris, woody roots, twigs, leaves and micro-organisms is a primary source of mineral soil organic matter. Primary productivity, the accumulation of nutrients, and other important ecosystem processes are largely dependent on the mineral soil organic matter that has developed during hundreds or thousands of years. Large quantities of coarse woody debris are typically produced following natural disturbances such as fires, pest/pathogen outbreaks, and windstorms, and make a significant contribution to the formation of soil organic matter (SOM). In contrast, timber harvesting often removes much of the coarse woody debris (CWD), which could result in a decrease in the quantity and a change in the quality of mineral soil organic matter.


Author(s):  
Daniel Tinker ◽  
Dennis Knight

Primary productivity, the accumulation of nutrients, and other important ecosystem processes are largely dependent on the mineral soil organic matter that has developed during hundreds or thousands of years. In forest ecosystems, the decomposition of coarse woody debris, woody roots, twigs, leaves and micro-organisms is a primary source of this organic matter. Large quantities of coarse woody debris are typically produced following natural disturbances such as fires, pest/pathogen outbreaks, and windstorms, and make a significant contribution to the formation of soil organic matter (SOM). In contrast, timber harvesting often removes most of the coarse woody debris (CWD), which could result in a decrease in the quantity and a change in the quality of mineral soil organic matter. The 1988 fires in Yellowstone National Park continue to provide an excellent opportunity to study the effects of fires of various intensities on ecosystem processes. Ecosystems develop under conditions that are constantly changing, but which remain within some range of natural variability. At present, national forest managers are uncertain as to the quantity of CWD which should be left in a stand following timber harvest in order to maintain levels of SOM which are within the range of natural variability. Little empirical data exist which help characterize the range of natural variability with regard to CWD in lodgepole pine forests, and it is therefore difficult to assess current timber harvesting practices in terms of how much CWD should be left at each site. We began a pilot study in late summer 1995 to begin to address this deficiency. A larger study of broader scope is planned for an additional two to three years, beginning this year, in 1996. This research will attempt to measure specific processes which include the distribution, decomposition, combustion by natural fires, and removal of CWD. The specific objectives of our study are: i) compare the mass and distribution of coarse woody debris that remains following fires of varying intensities to that which remains following clearcutting in the Rocky Mountain Region; ii) estimate the amount of CWD that is combusted or converted to charcoal following fires of varying intensities in stands of varying stages of development; and iii) estimate the length of time necessary for every square meter of the forest soil to be affected by CWD under natural conditions.


Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115509
Author(s):  
Rafael S. Santos ◽  
Martin Wiesmeier ◽  
Dener M.S. Oliveira ◽  
Jorge L. Locatelli ◽  
Matheus S.C. Barreto ◽  
...  

2013 ◽  
pp. 251-259
Author(s):  
B. P. Boincean ◽  
L. I. Bulat ◽  
M. A. Bugaciuc ◽  
M. Cebotari ◽  
V. V. Cuzeac

Radiocarbon ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 892-896 ◽  
Author(s):  
J D Stout ◽  
K M Goh

Δ14C and δ13C values for organic matter in forest and grassland soils, in the presence or absence of earthworms, indicate that it should be possible to quantify the effects of earthworms on soil organic matter by this means. Without earthworms, both in forest and grassland soils, plant debris tends to accumulate on the surface of the mineral soil and little organic matter is incorporated into or is translocated down the soil profile. Where earthworms are present, there is much more marked incorporation of fresh plant debris in the mineral soil. This is shown especially by the pulse of ‘bomb’ carbon and also by the δ13C values.


2012 ◽  
Vol 58 (4) ◽  
pp. 131-137
Author(s):  
Vladimír Šimanský ◽  
Erika Tobiašová

Abstract The effect of different doses of NPK fertilizer on the changes in quantity and quality of soil organic matter (SOM) in Rendzic Leptosol was evaluated. Soil samples were taken from three treatments of different fertilization: (1) control - without fertilization, (2) NPK 1 - doses of NPK fertilizer in 1st degree intensity for vine, and (3) NPK 3 - doses of NPK fertilizer in 3rd degree intensity for vine in the vineyard. Soil samples were collected in years 2008-2011 during the spring. The higher dose of NPK fertilizer (3rd degree intensity of vineyards fertilization) was responsible for the higher content of labile carbon (by 21% in 0-0.3 m and by 11% as average of the two depths 0-0.3 m and 0.3-0.6 m). However, by application of a higher dose of NPK (1.39%) in comparison to no fertilizer treatment (1.35%) or NPK 1 (1.35%) the tendency of total organic carbon content increase and hot-water soluble carbon decrease were determined. Fertilization had a negative effect on SOM stability. Intensity of fertilization affected the changes in quantity and quality of SOM; therefore it is very important to pay attention to the quantity and quality of organic matter in productive vineyards.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hui Wang ◽  
Thomas W. Boutton ◽  
Wenhua Xu ◽  
Guoqing Hu ◽  
Ping Jiang ◽  
...  

Radiocarbon ◽  
2006 ◽  
Vol 48 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Femke H Tonneijck ◽  
Johannes van der Plicht ◽  
Boris Jansen ◽  
Jacobus M Verstraten ◽  
Henry Hooghiemstra

Volcanic ash soils (Andosols) may offer great opportunities for paleoecological studies, as suggested by their characteristic accumulation of organic matter (OM). However, understanding of the chronostratigraphy of soil organic matter (SOM) is required. Therefore, radiocarbon dating of SOM is necessary, but unfortunately not straightforward. Dating of fractions of SOM obtained by alkali-acid extraction is promising, but which fraction (humic acid or humin) renders the most accurate 14C dates is still subject to debate. To determine which fraction should be used for 14C dating of Andosols and to evaluate if the chronostratigraphy of SOM is suitable for paleoecological research, we measured 14C ages of both fractions and related calibrated ages to soil depth for Andosols in northern Ecuador. We compared the time frames covered by the Andosols with those of peat sequences nearby to provide independent evidence. Humic acid (HA) was significantly older than humin, except for the mineral soil samples just beneath a forest floor (organic horizons), where the opposite was true. In peat sections, 14C ages of HA and humin were equally accurate. In the soils, calibrated ages increased significantly with increasing depth. Age inversions and homogenization were not observed at the applied sampling distances. We conclude that in Andosols lacking a thick organic horizon, dating of HA renders the most accurate results, since humin was contaminated by roots. On the other hand, in mineral soil samples just beneath a forest floor, humin ages were more accurate because HA was then contaminated by younger HA illuviated from the organic horizons. Overall, the chronostratigraphy of SOM in the studied Andosols appears to be suitable for paleoecological research.


1983 ◽  
Vol 20 (5) ◽  
pp. 859-866 ◽  
Author(s):  
J. F. Dormaar

In southern Alberta, a buried Ah horizon is frequently present beneath Mazama tephra (ca. 6600 years BP). Drainage conditions during the formation of such buried Ah horizons may determine the quality of the aliphatic carboxylic acids in the soil organic matter. The spectrum of aliphatic acids extracted from a number of buried Ah horizons indeed suggests either well drained or poorly drained conditions during soil formation regardless of the mode of deposition of materials before or after the soil-forming interval. The climate required for development of the well drained paleosols was inferred to be similar to the climate under which surficial Black Chernozemic Ah horizons were formed.


Sign in / Sign up

Export Citation Format

Share Document