scholarly journals The Effects of a Complex Trophic Structure of Mammalian Host Species on the Ecology of Emerging Infectious Diseases

Author(s):  
Leticia Gutierrez ◽  
Robert Ricklefs

Wildlife-parasite interactions among both ectoparasites and haemoparasites and their hosts are not well known among North American mammals, particularly in the case of relatively intact and complex communities of mammals that include top-level predators, large herbivores and a wide variety of rodent species. Understanding the distribution of haemoparasites among potential mammalian hosts can indicate links between hosts, biological vectors, disease agents, and human disease risk. This study examines the role and effects of a complex community of mammalian host species in maintaining the overall health of the ecosystem. Thereby, it explores the indirect and direct effects of wildlife in preventing the emergence of human infectious diseases depending upon land-use change/vegetation cover and host species richness. Rodents were captured and screened for blood parasites and ectoparasites in spring and summer 2011 within Grand Teton National Park (Figure 1). Sites were chosen by land-use /vegetation cover. Small blood samples from trapped individuals were collected and kept in lysis buffer/FTA cards. All the animals were released unharmed after blood sampling and ectoparasite collection. Collaborative efforts lead to collection of blood/tick samples from large predators, mesocarnivores and ungulates. Parasite DNA isolated from mammalian blood samples is being analyzed using the polymerase chain reaction and reverse line blot. DNA sequencing will be carried out to identify Plasmodium, Rickettsia Babesia, Borrelia, Ehrlichia, Hepatozoon, Anaplasma, and Theileria haemoparasites in the blood and in tick/flea samples.

Author(s):  
Leticia Gutierrez

The benefit of a complex, intact community for maintaining ecosystem health in the face of emerging infectious disease risk has not been deeply explored. The diversity and distribution of haemoparasites in potential host mammal fauna are virtually unknown, and many diseases endemic to North America are not well understood in terms of transmission factors, prevalence, and contagion. Many of these tick and rodent borne pathogens nowadays are considered to be potential emerging infectious diseases that could spread to adjacent areas and new hosts, including humans, with climate change, land-use shift, and the expansion of distributions of the natural vectors of such haemoparasites. This study examines the effect of mammal community complexity in maintaining ecosystem health with respect to rodent/tick-borne diseases which have a high value for human public health as zoonotic diseases as well as for the unknown natural history of the mammalian community network.


2016 ◽  
Vol 2 (12) ◽  
pp. e1600387 ◽  
Author(s):  
Aaron L. Morris ◽  
Jean-François Guégan ◽  
Demetra Andreou ◽  
Laurent Marsollier ◽  
Kevin Carolan ◽  
...  

Generalist microorganisms are the agents of many emerging infectious diseases (EIDs), but their natural life cycles are difficult to predict due to the multiplicity of potential hosts and environmental reservoirs. Among 250 known human EIDs, many have been traced to tropical rain forests and specifically freshwater aquatic systems, which act as an interface between microbe-rich sediments or substrates and terrestrial habitats. Along with the rapid urbanization of developing countries, population encroachment, deforestation, and land-use modifications are expected to increase the risk of EID outbreaks. We show that the freshwater food-web collapse driven by land-use change has a nonlinear effect on the abundance of preferential hosts of a generalist bacterial pathogen,Mycobacterium ulcerans. This leads to an increase of the pathogen within systems at certain levels of environmental disturbance. The complex link between aquatic, terrestrial, and EID processes highlights the potential importance of species community composition and structure and species life history traits in disease risk estimation and mapping. Mechanisms such as the one shown here are also central in predicting how human-induced environmental change, for example, deforestation and changes in land use, may drive emergence.


Science ◽  
2018 ◽  
Vol 359 (6383) ◽  
pp. 1517-1519 ◽  
Author(s):  
Jamie Voyles ◽  
Douglas C. Woodhams ◽  
Veronica Saenz ◽  
Allison Q. Byrne ◽  
Rachel Perez ◽  
...  

Infectious diseases rarely end in extinction. Yet the mechanisms that explain how epidemics subside are difficult to pinpoint. We investigated host-pathogen interactions after the emergence of a lethal fungal pathogen in a tropical amphibian assemblage. Some amphibian host species are recovering, but the pathogen is still present and is as pathogenic today as it was almost a decade ago. In addition, some species have defenses that are more effective now than they were before the epidemic. These results suggest that host recoveries are not caused by pathogen attenuation and may be due to shifts in host responses. Our findings provide insights into the mechanisms underlying disease transitions, which are increasingly important to understand in an era of emerging infectious diseases and unprecedented global pandemics.


Author(s):  
Conner Philson ◽  
Lyndsey Gray ◽  
Lindsey Pedroncelli ◽  
William Ota

Disease transmission from animals to humans — called a zoonotic disease — is responsible for nearly 60% of emerging infectious diseases. While zoonotic diseases already pose a major risk to humanity, global climate change and its causal human behaviors are compounding zoonotic disease risk. Dynamic species distributions, increased species overlap, and alterations in human land use increase the risk of disease transmission from non-humans to humans. Ticks, which carry many human disease-causing agents, are a primary example. As 23% of emerging infectious diseases globally are spread by blood-feeding arthropods, such as ticks, managing and monitoring tick distributions and their overlap and potential contact with humans is vital to decrease the risk of zoonotic disease transmission. While some programs are already in place, expanding current and implementing new programs across the globe is pertinent. We propose enhancing international collaboration and communication efforts through intergovernmental organizations such as the United Nations (UN) and the World Health Organization (WHO), to better research, monitor, and mitigate the risk of tick-borne zoonotic disease. By focusing international efforts on ticks, subsequent zoonotic disease-climate change research and monitoring efforts can be done across species.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 86-93
Author(s):  
Dhirajsingh Sumersingh Rajput

Evolution is continuous process of changes in structural and physiological mechanism in living being. Microbes/pathogens can evolve naturally or artificially and become resistant to various medicines. Novel coronavirus is such evolved pathogen of coronavirus group. Enough strong immunity is needed to prevent or survive from COVID-19 pandemic. Ayurveda provides ways for evolving physiological responses to built immunity. Present work is brief attempt to increase insight in this filed.Present review was done based on simple theory of evolution, recent updates regarding prevention of COVID-19, Ayurveda aspect toward infectious diseases and Ayurveda ways towards prevention of infectious diseases with special reference to COVID-19. Person with impaired immunity is more susceptible for COVID-19 and thus immunity is an important preventing factor. Ayurveda Rasayana (rejuvanation) herbs, Yoga exercises, Pranayama (special breathing exercise), daily regimens and personal hygiene guidelines can be helpful strategies in controlling the spread of COVID-19.The preventive aspects of pandemic situations are narrated in Ayurveda with enough details. These ways need to be scientifically explored and refined for precision. As prevention is always better than cure hence Ayurveda ways can be considered for future strategies to avoid pandemics such as COVID-19.  There is great need of research on Ayurveda medicines on COVID-19 like diseases.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1026-1033
Author(s):  
Nivedha Valliammai Mahalingam ◽  
Abilasha R ◽  
Kavitha S

Enormous successes have been obtained against the control of major epidemic diseases, such as SARS, MERS, Ebola, Swine Flu in the past. Dynamic interplay of biological, socio-cultural and ecological factors, together with novel aspects of human-animal interphase, pose additional challenges with respect to the emergence of infectious diseases. The important challenges faced in the control and prevention of emerging and re-emerging infectious diseases range from understanding the impact of factors that are necessary for the emergence, to development of strengthened surveillance systems that can mitigate human suffering and death. The aim of the current study is to assess the awareness of symptomatic differences between viral diseases like COVID-19, SARS, Swine flu and common cold among dental students that support the prevention of emergence or re-emergence. Cross-sectional type of study conducted among the undergraduate students comprising 100 Subjects. A questionnaire comprising 15 questions in total were framed, and responses were collected in Google forms in SPSS Software statistical analysis. The study has concluded that dental students have an awareness of the symptomatic differences between infectious viral disease. The study concluded that the awareness of symptomatic differences between viral diseases like COVID-19, SARS, Swine flu, Common cold is good among the dental students who would pave the way for early diagnosis and avoid spreading of such diseases. A further awareness can be created by regular webinars, seminars and brainstorming sessions among these healthcare professionals.


Sign in / Sign up

Export Citation Format

Share Document