EFFECTS OF HIGH–OIL CORN AND SOYBEAN OIL ADDITIVES ON DUSTINESS OF GROUND CORN AND FEED

2002 ◽  
Vol 45 (5) ◽  
Author(s):  
A. J. Heber
Weed Science ◽  
1986 ◽  
Vol 34 (4) ◽  
pp. 572-576 ◽  
Author(s):  
John D. Nalewaja ◽  
Grzegorz A. Skrzypczak

The influence of various additives on the absorption and translocation of fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid} butyl ester in oats (Avena sativaL. var. ‘Lyon’) was determined. Fluazifop absorption and translocation by oats 48 h after application were less when applied with safflower (Carthamus tinctoriusL.), sunflower (Helianthus annuusL.), soybean [Glycine max(L.) Merr.], linseed (Linum usitatissimumL.), and palm (Eleais quineeneisJacq.) oil than with petroleum oil. However, fluazifop absorption and translocation continued to increase for the 96-h duration of the experiment when applied with soybean oil but only for 24 h when applied with petroleum oil. The14C-fluazifop-label recovery was higher when applied with oils than when applied alone, which may have been due to reduced fluazifop volatility when it was emulsified with the oils. Absorption and translocation of fluazifop applied with glycerol or various emulsifiers were equal to or less than fluazifop absorption and translocation when applied with petroleum oils but were greater than fluazifop absorption and translocation when applied with seed oils 48 h after application. Fluazifop absorption and translocation were similar whether soybean or petroleum oil additives were applied with or without emulsifiers. Totally refined seed oils only slightly increased fluazifop absorption and translocation compared to fluazifop with once-refined or degummed seed oils.


Tribologia ◽  
2016 ◽  
Vol 268 (4) ◽  
pp. 21-28
Author(s):  
Henryk BĄKOWSKI

The paper presents the influence of selected solid lubricants used for the lubrication of wheel flanges of railways on the formation and development of corrosion. Tested solid lubricants consisted primarily of graphite, molybdenum disulphide, and soybean oil additives. Moreover, grease sticks were selected to make it possible to compare and evaluate their suitability in applying the lubrication of railway wheels. The study is based on the European standard that allows the determination of wear in the test samples to determine the advantages in relation to the processes of corrosion.


2010 ◽  
Vol 25 (4) ◽  
pp. 341-351
Author(s):  
Aniela Falkowska ◽  
Dorota Bugnacka ◽  
Wojciech Kozera ◽  
Janusz Falkowski

1959 ◽  
Vol 18 (3) ◽  
pp. 1053-1058 ◽  
Author(s):  
D. C. Acker ◽  
D. V. Catron ◽  
V. W. Hays

2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 485d-485
Author(s):  
A.L. Lancaster ◽  
D.E. Deyton ◽  
C.E. Sams ◽  
C.D. Pless ◽  
D.C. Fare ◽  
...  

Research was conducted to determine if soybean oil sprays may substitute for petroleum oil for control of insects on nursery crops. Dormant field-grown `Globe' arborvitae shrubs infested with Fletcher scale were sprayed on 9 Mar. 1997 with 0%, 2%, 3%, or 4% soybean oil. One hundred scales per plant were evaluated on 4 Apr. 1997. Spraying 2% to 4% soybean oil on dormant arborvitae caused ≥97% mortality of Fletcher scale compared to only 7% mortality on untreated plants. of white pine, viburnum, `Anthony Waterer' spirea, `Green Beauty' boxwood, western red cedar, `Blue Star' juniper, `Blue Pacific' juniper, `Japanese Garden' juniper, and arborvitae plants in trade gallon pots and `Densiformus' yew and dwarf `Alberta' spruce in trade quart pots were sprayed with 0% (water control), 1%, or 2% soybean oil (emulsified with Latron B-1956) or 2% SunSpray Ultra-Fine Spray oil on 26 Aug. 1997 for phytotoxicity evaluation. No phytotoxicity occurred on western cedar, spirea, boxwood, yew, arborvitae, or viburnum. Spraying Sunspray or soybean oil caused initial loss of blue color on blue junipers and white pine. Spraying 1 or 2% soybean oil or 2% SunSpray caused phytotoxicity to `Blue Star' juniper. The `Blue Pacific' juniper, `Japanese Garden' juniper, and Alberta spruce were slightly damaged by 2% but not by 1% soybean oil.


Sign in / Sign up

Export Citation Format

Share Document