Water Infiltration Under No-tillage, Minimum Tillage and Conventional Tillage Systems on a Sandy Loam Alfisols

2004 ◽  
Author(s):  
J.O. Akinyemi ◽  
A.O. Adedeji
1988 ◽  
Vol 15 (2) ◽  
pp. 94-97 ◽  
Author(s):  
D. L. Colvin ◽  
B. J. Brecke ◽  
E. B. Whitty

Abstract Effects of minimum tillage (MT) production techniques on peanut (Arachis hypogaea L.) root growth and yield were unknown. Field experiments were therefore conducted during 1984 near Williston and Marianna, FL and during 1985 near Williston and Jay, FL to evaluate effects of surface and subsurface tillage on peanut production. Soil types were a Zuber loamy sand (fine, mixed hyperthermic Ultic Hapludalf) at Williston, a Chipola sandy loam (loamy, siliceous, thermic Arenic Hapludult) at Marianna, and a Red Bay sandy loam (fine, loamy, siliceous, thermic Rhodic Paleudult) at Jay. The Sunrunner peanut cultivar was planted using a modified twin 23 cm row spacing and seeded at a rate of 140 kg/ha. Eight tillage systems that included combinations of conventional tillage, strip-tillage, and no-tillage with and without subsoiling or subsurface slitting were evaluated. Peanuts germinated and grew well except in no-tillage plots that received no subsurface tillage. Without surface or subsurface tillage there was not sufficient soil disturbance to insure proper seed-soil contact or seed cover. Generally, plots that received some degree of conventional tillage yielded better than plots with no surface preparation (4090 vs. 3760 kg/ha avg.). Minimum tillage plots yielded numerically less than conventional plots but in only a few cases were significant differences in yield noted. At most locations, minimum tillage plots that received no subsurface tillage developed a “lazy root syndrome” in which the few roots produced were quite shallow and grew near the soil surface. These treatments yielded less (3680 vs. 4010 kg/ha avg.) than those with conventional seedbed preparation or the minimum tillage treatments receiving subsurface tillage. Root strength and penetration measurements roughly reflect the same trends as peanut yields. The slit-tillage system resulted in peanut yields equal to or better than those obtained with chisel point subsoiling. Slitter wear and breakage problems were encountered but overall, the subsurface slit system appears to be a functional alternative to chisel point subsoiling.


1988 ◽  
Vol 15 (1) ◽  
pp. 21-24 ◽  
Author(s):  
D. L. Colvin ◽  
B. J. Brecke

Abstract Field experiments were conducted during 1984 and 1985 at Williston, Florida on a Zuber loamy sand (fine, mixed hyperthermic Ultic Hapludalfs) and at Jay, Florida in 1985 on a Red Bay sandy loam (fine-loamy, siliceous, thermic Rhodic Paleudults) to investigate the effects of conventional and minimum tillage on the grade and yield of eight peanut (Arachis hypogaea L.) cultivars. Cultivars studied included: 1) three runner-type peanuts - Florunner. Sunrunner, and GK-7, 2) four virginia-type peanuts - Early Bunch, Florigiant, GK-3, and NC-7, and 3) one spanish-type peanut - Valencia C. Conventional plots were established using a moldboard plow with repeated diskings to provide a smooth even seedbed. Minimum-tillage plots were established using a modified Brown-Harden Ro-Till®. Tillage did not affect peanut yield, and cultivars generally did not differ in response to tillage systems. There appears to be no immediate need for peanut cultivar performance testing in different tillage systems. However, in 1984 at Williston Florunner and Sunrunner yielded 20% and 12% better, respectively, in conventional tillage conditions than in minimum-tillage, whereas in 1985 Early Bunch yielded 17% less in tilled systems compared to minimum-tillage systems. This response may be related to slight plant density differences, harvestability problems or genotypic differences. Results indicate that yield and quality of peanuts, based on the data collected from the cultivars utilized in this study would be equal under conventional or minimum-tillage production.


2004 ◽  
Vol 84 (3) ◽  
pp. 739-747 ◽  
Author(s):  
J. R. Moyer ◽  
J. Nitschelm ◽  
P. Regitnig ◽  
R. E. Blackshaw ◽  
H. C. Huang ◽  
...  

Sugarbeets (Beta vulgaris L.) are grown on intensively tilled-irrigated land in southern Alberta, which is subject to soil erosion by wind. Experiments were conducted on commercial fields near Burdett, AB, to determine the effect of the tillage system and previous crops on sugarbeet production. The previous crops were dry bean (Phaseolus vulgaris L.) or wheat (Triticum aestivium L.) and the tillage systems were conventional (moldboard plow, vibrashank cultivator, harrow, packer), minimum (double disc, self-cleaning harrow, glyphosate) or no tillage (glyphosate). After dry beans, sugarbeet fresh weight and extractable sugar yields were similar with all tillage systems. All of the tillage systems left less than 100 g m-2 of plant residue on the soil surface in the spring following dry beans, which is insufficient to protect the soil from wind erosion. After wheat, sugarbeet yields were similar with minimum and conventional tillage but lower with no tillage. Both minimum and no-tillage systems left sufficient plant residue on the soil surface to protect the soil from erosion (> 200 g m-2). Sugarbeet stand density following wheat was lower with no tillage than conventional or minimum tillage, reflecting poor seed placement and daily maximum soil temperature (5 cm depth) of up to 10°C lower under no tillage than conventional tillage. After wheat, there was a trend toward lower densities of hard-seeded annuals, such as redroot pigweed (Amaranthus retroflexus L.), after no tillage than conventional tillage. Of the cropping systems tested in this study, only the minimum tillage system after wheat provided optimum sugarbeet yield and left enough plant residue to protect the soil from wind erosion. Key words: Crop rotation, bean, wheat, sugarbeet, no-tillage


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 845C-845 ◽  
Author(s):  
Lynn Marie Sosnoskie* ◽  
John Cardina ◽  
Catherine Papp Herms ◽  
Matthew Kleinhenz

Community composition of the soil seedbank were characterized 35 years after the implementation of a long-term study involving cropping sequences (continuous corn, corn-soybean, corn-oat-hay) and tillage systems (conventional-, minimum- and no-tillage). Germinable seeds within the top 10 cm of soil in early spring were identified and enumerated in 1997, 1998 and 1999. Species diversity, which was characterized by richness (S), evenness (E) and the Shannon-Weiner index (H'), was significantly influenced by crop rotation rather than tillage. Generally, diversity measures were greatest in the corn-oat-hay sequences as compared to the corn-soybean rotations and the corn monoculture. Species richness and H' typically declined with increasing soil disturbance (no-tillage > minimum-tillage > conventional-tillage), whereas E increased with more intense tillage. A synthetic importance value (RI), incorporating both density and frequency measures, was generated for each species in each plot. Multiresponse permutation procedures (MRPP) were used to examine differences in weed community composition with respect to management system for all three years. Results suggest that the weed seed community in a corn-oat-hay rotational system differs substantially, in structure and composition, from communities associated with continuous corn and corn-soybean systems. No tillage systems were significantly different in composition as compared to conventional tillage and minimum tillage treatments. Crop sequence and tillage system are important cultural methods of shifting weed species number and diversity, and therefore, community structure. Manipulation of these factors could help to reduce the negative impact of weeds on crop production.


2017 ◽  
Vol 31 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Jaime A. Farmer ◽  
Kevin W. Bradley ◽  
Bryan G. Young ◽  
Lawrence E. Steckel ◽  
William G. Johnson ◽  
...  

A field study was conducted in 2014 and 2015 in Arkansas, Illinois, Indiana, Ohio, Tennessee, Wisconsin, and Missouri to determine the effects of tillage system and herbicide program on season-long emergence ofAmaranthusspecies in glufosinate-resistant soybean. The tillage systems evaluated were deep tillage (fall moldboard plow followed by (fb) one pass with a field cultivator in the spring), conventional tillage (fall chisel plow fb one pass with a field cultivator in the spring), minimum tillage (one pass of a vertical tillage tool in the spring), and no-tillage (PRE application of paraquat). Each tillage system also received one of two herbicide programs; PRE application of flumioxazin (0.09 kg ai ha–1) fb a POST application of glufosinate (0.59 kg ai ha−1) plusS-metolachlor (1.39 kg ai ha–1), or POST-only applications of glufosinate (0.59 kg ha−1). The deep tillage system resulted in a 62, 67, and 73% reduction inAmaranthusemergence when compared to the conventional, minimum, and no-tillage systems, respectively. The residual herbicide program also resulted in an 87% reduction inAmaranthusspecies emergence compared to the POST-only program. The deep tillage system, combined with the residual program, resulted in a 97% reduction inAmaranthusspecies emergence when compared to the minimum tillage system combined with the POST-only program, which had the highestAmaranthusemergence. Soil cores taken prior to planting and herbicide application revealed that only 28% of theAmaranthusseed in the deep tillage system was placed within the top 5-cm of the soil profile compared to 79, 81, and 77% in the conventional, minimum, and no-tillage systems. Overall, the use of deep tillage with a residual herbicide program provided the greatest reduction inAmaranthusspecies emergence, thus providing a useful tool in managing herbicide-resistantAmaranthusspecies where appropriate.


2014 ◽  
Vol 38 (1) ◽  
pp. 288-298 ◽  
Author(s):  
Moacir Tuzzin de Moraes ◽  
Henrique Debiasi ◽  
Reimar Carlesso ◽  
Julio Cezar Franchini ◽  
Vanderlei Rodrigues da Silva

Soil penetration resistance is an important indicator of soil physical quality and the critical limit of 2 MPa has been widely used to characterize the soil physical quality, in both no-tillage and conventional systems. The aim of this study was to quantify the influence of different tillage and cropping systems on the soil penetration resistance in a Rhodic Eutrudox. The experiment was carried out in a 5 × 2 factorial, completely randomized block design (tillage systems vs cropping systems), with four replications. The tillage systems consisted of: conventional tillage disk harrow; minimum tillage with annual chiseling; minimum tillage with chiseling every three years; no-tillage for 11 consecutive years; and no-tillage for 24 consecutive years. The factor cropping systems was represented by: crop rotation and crop succession. The soil penetration resistance (SPR) was determined in 20 soil samples per treatment and layer (0.0-0.10; 0.10-0.20 and 0.20-0.30 m) for each soil matric potential: -6, -10, -33, -100, -500 kPa. The SPR was determined at a volumetric soil water content equivalent to the fraction of plant-available water of 0.7. There were no differences of soil penetration resistance between the two cropping systems. Differences in soil penetration resistance among tillage systems were related to the matric potential at which the samples were equilibrated. The critical SPR limit of 2 MPa normally used for conventional tillage should be maintained. However, this value of 2 MPa is inappropriate for the physical quality characterization of Rhodic Eutrudox under no-tillage and/or minimum tillage with chiseling. Regardless of the cropping systems, the critical SPR limit should be raised to 3 MPa for minimum tillage with chiseling and to 3.5 MPa for no-tillage.


2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.


2015 ◽  
Vol 39 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Elói Panachuki ◽  
Ildegardis Bertol ◽  
Teodorico Alves Sobrinho ◽  
Paulo Tarso Sanches de Oliveira ◽  
Dulce Buchala Bicca Rodrigues

Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols). In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT), conventional tillage (CT), and minimum tillage (MT) with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb) and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.). Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.


2010 ◽  
Vol 45 (12) ◽  
pp. 1331-1341 ◽  
Author(s):  
Homero Bergamaschi ◽  
Genei Antonio Dalmago ◽  
João Ito Bergonci ◽  
Cleusa Adriane Menegassi Bianchi Krüger ◽  
Bruna Maria Machado Heckler ◽  
...  

The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy


Nativa ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 494
Author(s):  
Carla Da Penha Simon ◽  
Edney Leandro da Vitória ◽  
Elcio Das Graça Lacerda ◽  
Yago Soares Avancini ◽  
Tatiana Fiorotti Rodrigues ◽  
...  

Objetivou-se quantificar o CO2,atributos químicos e físicos do solo são influenciados por diferentes manejos de preparo do solo. O Delineamento experimental adotado foi inteiramente casualizado, sendo os tratamentos: Sistema de Plantio Direto (SPD), Cultivo Mínimo e Preparo Convencional (PC), e como referência: área de vegetação nativa (Mata), contando com seis repetições cada variável de estudo. Além da comparação por teste médias, foi realizada uma análise exploratória das leituras nos sistemas de preparo do solo, onde o CO2 foi traduzido graficamente num diagrama o box-plot. As variáveis avaliadas foram: CO2 obtido por meio de um analisador de gás infravermelho; os atributos físicos do solo: Densidade do solo (Ds), Volume Total de Poros (VTP), Macroporosidade (Ma), Microporosidade (Mi), Resistência a Penetração do solo (RPS) e o atributo químico: carbono orgânico total (COT). O fluxo CO2 do solo apresentou diferença significativa entre o SPD e o PC; valores médios encontrados para SPD, CM, Mata e PC foram 2,30; 2,25; 2,18; e 1,39 μmolCO2m−2 s−1, respectivamente; o COT apresentou seu maior valor na área de Mata (32,95 gkg-1) diferindo estatisticamente das demais áreas. Observou-se uma menor emissão de CO2 do solo no PC, pois o sistema apresenta baixo aporte de carbono orgânico.Palavras-chave: sistema de preparo convencional; cultivo mínimo; preparo convencional; carbono orgânico total. CO2 EMISSION, PHYSICAL ATTRIBUTES AND TOTAL ORGANIC CARBON IN DIFFERENT SOIL PREPARATION SYSTEMS ABSTRACT: The objective was to quantify the CO2, chemical and physical attributes of the soil are influenced by different management of soil preparation. The experimental design was completely randomized, with the treatments: no-tillage (NT), minimum tillage (MT) and conventional tillage (CT), and as reference:  native forest (NF), with six replicates each study variable. In addition to the mean test comparison, an exploratory analysis of the readings was performed in the soil preparation systems, where CO2 was graphically translated into a box-plot diagram. The variables evaluated were: CO2 obtained by means of a infrared gas analyzer; density (Bd), total pore volume (TPV), macroporosity (Ma), microporosity (Mi), resistance to soil penetration (RSP) and chemical attribute: total organic carbon (TOC). The CO2 soil flux presented a significant difference between NT and CT; where respectively the mean values found for SPD, CM, Mata and PC were 2.30; 2.25; 2.18; and 1.39 μmolCO2m-2s-1; the COT had its highest value in the Mata area (32.95 gkg-1), differing statistically from the other areas. It was observed a lower CO2 emission of the soil in the PC, because the system has low input of organic carbon.Keywords: no-tillage; conventional tillage; minimum tillage; total organic carbon.


Sign in / Sign up

Export Citation Format

Share Document