Ethanol Production from Sugar Beet Pulp using Escherichia coli KO11 and Saccharomyces cerevisiae

2011 ◽  
Vol 3 (4) ◽  
pp. 199-209 ◽  
Author(s):  
R. Rorick ◽  
N. Nahar ◽  
S. W. Pryor
2013 ◽  
pp. 313-321 ◽  
Author(s):  
Vesna Vucurovic ◽  
Radojka Razmovski ◽  
Uros Miljic ◽  
Vladimir Puskas

The immobilization of Saccharomyces cerevisiae onto sugar beet pulp (SBP) by natural adhesion is an efficient and low-cost method for retaining high biocatalyst density in the ethanol fermentation system. In the present study, cells of S. cerevisiae 163, were immobilized by natural adhesion onto SBP. The retention of immobilized cells attained the level of about 1.7?1011 cells/gram of dry SBP. Continuous ethanol production from sugar beet thick juice (TJ) was performed in a cylinder glass bioreactor at a temperature of 30?C and pH 5 during a 27-day period. The stability of the fermentation process at dilution rate (D) of 0.025 h-1 and 0.05 h-1 was evaluated. The yeast-SBP system was shown to be stable for over a 15-day period at the dilution rate of 0.025 h-1, while the dilution rate of 0.05 h-1 was found to be unsuitable due to the intensive yeast leaching from the support. At D of 0.025 h-1 the maximum sugar utilization (Su), ethanol concentration (P), volumetric ethanol productivity (Qp), ethanol yield (Yp/s) and fermentation efficiency were 97.1%, 54.7 g/l, 2.3 g/lh, 0.498 g/g and 97.6%, respectively.


2012 ◽  
pp. 325-333 ◽  
Author(s):  
Vesna Vucurovic ◽  
Radojka Razmovski

Natural adhesion of Saccharomyces cerevisiae onto sugar beet pulp (SBP) is a very simple and cheap immobilization method for retaining high cells density in the ethanol fermentation system. In the present study, yeast cells were immobilized by adhesion onto SBP suspended in the synthetic culture media under different conditions such as: glucose concentration (100, 120 and 150 g/l), inoculum concentration (5, 10 and 15 g/l dry mass) and temperature (25, 30, 35 and 40?C). In order to estimate the optimal immobilization conditions the yeast cells retention (R), after each immobilization experiment was analyzed. The highest R value of 0.486 g dry mass yeast /g dry mass SBP was obtained at 30?C, glucose concentration of 150 g/l, and inoculum concentration of 15 g/l. The yeast immobilized under these conditions was used for ethanol fermentation of sugar beet molasses containing 150.2 g/l of reducing sugar. Efficient ethanol fermentation (ethanol concentration of 70.57 g/l, fermentation efficiency 93.98%) of sugar beet molasses was achieved using S. cerevisiae immobilized by natural adhesion on SBP.


2015 ◽  
Vol 190 ◽  
pp. 332-338 ◽  
Author(s):  
Carolina Bellido ◽  
Celia Infante ◽  
Mónica Coca ◽  
Gerardo González-Benito ◽  
Susana Lucas ◽  
...  

Nahrung/Food ◽  
1991 ◽  
Vol 35 (6) ◽  
pp. 641-645
Author(s):  
A. El-Makhzangy ◽  
K. Ayyad ◽  
E. Abo-ElNile

2012 ◽  
Vol 93 ◽  
pp. 168-175 ◽  
Author(s):  
Yi Zheng ◽  
Chaowei Yu ◽  
Yu-Shen Cheng ◽  
Christopher Lee ◽  
Christopher W. Simmons ◽  
...  

Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


Sign in / Sign up

Export Citation Format

Share Document