<i>Evaluating of Products for Mitigation of Odor and Reduction of NH3, H2S, GHG, and VOC Emissions from Swine Manure in Deep Pit Storage Structures</i>

2020 ◽  
Author(s):  
Baitong Chen ◽  
Jacek A Koziel ◽  
Chumki Banik ◽  
Hantian Ma ◽  
Myeongseong  Lee ◽  
...  
Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Chumki Banik ◽  
Hantian Ma ◽  
Myeongseong Lee ◽  
...  

Odorous gas emissions from swine production have been a concern for neighbors and communities near livestock farms. Manure storage is one of the main sources of gaseous emissions. Manure additive products are marketed as a simple solution to this environmental challenge. Manure additives are user-friendly for producers and can be applied (e.g., periodically poured into manure) without changing the current manure storage structure. Little scientific data exist on how these products perform in mitigating gaseous emissions from swine manure. The research objective was to evaluate the effectiveness of 12 marketed manure additives on mitigating odor, ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) from stored swine manure. A controlled pilot-scale setup was used to conduct 8-week long trials using manufacturer-prescribed dosages of additives into swine manures. Manure was outsourced from three swine farms to represent a variety of manure storage types and other factors affecting the properties. Measured gaseous emissions were compared between the treated and untreated manure. None of the tested products showed a significant reduction in gaseous emissions when all (n = 3) manures were treated as replicates. Selected products showed a wide range of statistically-significant reduction and generation of gaseous emissions when emissions were compared in pairs of manure types from one farm. The latter observation highlighted the lack of consistent mitigation of gaseous emissions by manure additives. The results of this study do not warrant full-scale trials with the tested products.


2015 ◽  
Vol 159 ◽  
pp. 18-26 ◽  
Author(s):  
D.S. Andersen ◽  
M.B. Van Weelden ◽  
S.L. Trabue ◽  
L.M. Pepple

2013 ◽  
Author(s):  
Neslihan Akdeniz ◽  
Larry D Jacobson ◽  
Charles J Clanton ◽  
Brian P Hetchler
Keyword(s):  

Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 411 ◽  
Author(s):  
Yu Zhang ◽  
Zhiping Zhu ◽  
Yunhao Zheng ◽  
Yongxing Chen ◽  
Fubin Yin ◽  
...  

Livestock manure is one of the major sources of volatile organic compound (VOC) emissions; however, characteristics of VOCs emitted from biogas digestate (BD) storage, which is a common manure practice, remain unclear. The objective of this study was to characterize VOC emissions during BD storage through the dynamic emission vessel method, to identify the VOC emissions that have potential odor and/or toxic effects. The results revealed the detection of 49 VOCs with seven classes, whose total concentration varied from 171.35 to 523.71 μg m−3. The key classes of the 49 VOCs included Oxygenated VOCs (OVOCs), olefins and halogenated hydrocarbons. The top four compositions, accounting for 74.38% of total VOCs (TVOCs), included ethanol, propylene, acetone and 2-butanone. The top four odorous VOCs, accounting for only 5.15% of the TVOCs, were toluene, carbon disulfide, ethyl acetate and methyl sulfide, with the concentration ranging from 13.25 to 18.06 μg m−3. Finally, 11 main hazardous air pollutant VOCs, accounting for 32.77% of the TVOCs, were propylene, 2-butanone, toluene, methyl methacrylate, etc., with the concentration ranging from 81.05 to 116.96 μg m−3. Results could contribute to filling the knowledge gaps in the characteristics of VOC emissions from biogas digestate (BD), and provide a basis for exploring mitigation strategies on odor and hazardous air pollutions.


2018 ◽  
Vol 61 (3) ◽  
pp. 943-953
Author(s):  
Daniel S. Andersen ◽  
Fan Yang ◽  
Steven L. Trabue ◽  
Brian J. Kerr ◽  
Adina Howe

Abstract. High levels of methane production from swine operations have been associated with foam accumulation in deep-pit manure storage systems. This foam poses both a safety concern (i.e., flash fires) and operational challenges in managing stored manure. Mitigating methane production is one approach to controlling foam accumulation. In this study, swine manures obtained from three deep-pit storage barns in central Iowa were dosed with narasin to evaluate its inhibitory effects on methane and biogas production. Dose rates ranged from 0 to 3.0 mg narasin kg-1 manure. Overall, methane rates were reduced by 9% for each mg of narasin added per kg of manure, and this reduction was effective for up to 25 days. However, the inhibitory effect weakened with time such that no statistical difference in cumulative methane production between samples dosed with narasin and undosed controls could be detected after 120 days of incubation. In addition to methane rates, narasin addition reduced the degradation of total and volatile solids in the manure by 1.9% and 2.6%, respectively, for each mg of narasin added per kg of manure. Additional study treatments included sugar (10 g kg-1 manure) with and without narasin (1.5 mg narasin kg-1 manure). Results from this treatment showed that methane production was initially increased by the sugar addition, but the effect lasted less than six days, at which point cumulative methane production was similar to the control. When treated with both narasin and sugar, the inhibitory effect did not impact gas production during the sugar digestion phase but did reduce methane and biogas production thereafter. The addition of sugar and the rate of narasin addition caused changes to the microbial community as compared to the control. Overall, the results indicated that narasin can be an effective additive for reducing methane emission from swine manure, but further study is needed to recommend dosing frequency and to evaluate how continuous addition of manure impacts narasin effectiveness. Keywords: Biogas, Manure management, Manure treatment, Methane, Narasin, Swine manure, Swine production.


Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Myeongseong Lee ◽  
Hantian Ma ◽  
Zhanibek Meiirkhanuly ◽  
...  

Hydrogen sulfide and ammonia are always a concern in the livestock industries, especially when farmers try to clear their manure storage pits. Agitation of manure can cause dangerously high concentrations of harmful agents such as H2S and NH3 to be emitted into the air. Biochar has the ability to sorb these gases. We hypothesized that applying biochar on top of manure can create an effective barrier to protect farmers and animals from exposure to NH3 and H2S. In this study, two kinds of biochar were tested, highly alkaline, and porous (HAP, pH 9.2) biochar made from corn stover and red oak biochar (RO, pH 7.5). Two scenarios of (6 mm) 0.25&rdquo; and (12 mm) 0.5&rdquo; thick layers of biochar treatments were topically applied to the manure and tested on a pilot-scale setup, simulating a deep pit storage. Each setup experienced 3-min of agitation using a transfer pump, and measurements of the concentrations of NH3 and H2S were taken in real-time and measured until the concentration stabilized after the sharp increase in concentration due to agitation. The results were compared with the control in the following 3 situations: 1. The maximum (peak) flux 2. Total emission from the start of agitation until the concentration stabilized, and 3. The total emission during the 3 min of agitation. For NH3, 0.5&rdquo; HAP biochar treatment significantly (p&lt;0.05) reduced maximum flux by 63.3%, overall total emission by 70%, and total emissions during the 3-min agitation by 85.2%; 0.25&rdquo; HAP biochar treatment significantly (p&lt;0.05) reduced maximum flux by 75.7%, overall, total emission by 74.5%, and total emissions during the 3-min agitation by 77.8%. 0.5&rdquo; RO biochar treatment significantly reduced max by 8.8%, overall total emission by 52.9%, and total emission during 3-min agitation by 56.8%; 0.25&rdquo; RO biochar treatment significantly reduced max by 61.3%, overall total emission by 86.1%, and total emission during 3-min agitation by 62.7%. For H2S, 0.5&rdquo; HAP biochar treatment reduced the max by 42.5% (p=0.125), overall total emission by 17.9% (p=0.290), and significantly reduced the total emission during 3-min agitation by 70.4%; 0.25&rdquo; HAP treatment reduced max by 60.6% (p=0.058), and significantly reduced overall and 3-min agitation&rsquo;s total emission by 64.4% and 66.6%, respectively. 0.5&rdquo; RO biochar treatment reduce the max flux by 23.6% (p=0.145), and significantly reduced overall and 3-min total emission by 39.3% and 62.4%, respectively; 0.25&rdquo; RO treatment significantly reduced the max flux by 63%, overall total emission by 84.7%, and total emission during 3-min agitation by 67.4%.


2018 ◽  
Vol 61 (6) ◽  
pp. 1951-1967
Author(s):  
Hongjian Lin ◽  
Weiwei Liu ◽  
Jing Gan ◽  
Yuchuan Wang ◽  
Bo Hu

Abstract. Human and animal exposure to hydrogen sulfide (H2S) in animal barns has long been a serious issue due to the acute and chronic toxicity of H2S. The H2S concentration in the room air of deep-pit swine barns is usually within hundreds of parts per billion by volume; however, it can sharply increase to hundreds and even thousands of parts per million (ppm) during manure agitation and pump-out. To explore the sudden release and concentration distribution of H2S, this study collected and analyzed samples from varying depths of a normal non-foaming barn and a foaming barn and then mathematically simulated the H2S concentrations and emissions in the pit headspace and room air for both barns during pit agitation. Simulations were conducted for six ventilation scenarios, or six different combinations of pit fan and wall fan ventilation rates. The simulation results suggested that pit ventilation was more effective than wall ventilation in decreasing H2S concentration in room air where pigs may be housed during agitation. A minimal pit ventilation rate of 40 cfm per pig was necessary to lower the peak concentration in room air to less than the permissible exposure limit of 20 ppm. The simulation results also indicated that gas bubble release during agitation accounted for the main part (81%) of H2S emission in the foaming barn, and expedited molecular diffusion contributed the main part (70.2%) of H2S emission in the non-foaming barn. The disturbed air-manure interface during agitation induced a pH decrease and therefore increased the apparent overall mass transfer coefficient of H2S, resulting in a substantially increased mass transfer rate and concentration. The immediately dangerous to life or health (IDLH) concentration of 100 ppm may be reached during pit agitation if pit fan ventilation is not fully provided, and the duration of the exceedance could be more than 30 min. The results provide empirical data for future simulation of spatial and temporal H2S distribution and are beneficial for developing methods to control H2S below hazardous levels so that the health and safety of workers can be better secured. Keywords: Agricultural safety, Deep-pit storage, Hydrogen sulfide concentration, Sulfide distribution, Swine manure.


2012 ◽  
Vol 124 ◽  
pp. 95-104 ◽  
Author(s):  
David B. Parker ◽  
Lingshuang Cai ◽  
Ki-Hyun Kim ◽  
Kristin E. Hales ◽  
Mindy J. Spiehs ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254730
Author(s):  
Fan Yang ◽  
Daniel S. Andersen ◽  
Steven Trabue ◽  
Angela D. Kent ◽  
Laura M. Pepple ◽  
...  

Foam accumulation in swine manure deep-pits has been linked to explosions and flash fires that pose devastating threats to humans and livestock. It is clear that methane accumulation within these pits is the fuel for the fire; it is not understood what microbial drivers cause the accumulation and stabilization of methane. Here, we conducted a 13-month field study to survey the physical, chemical, and biological changes of pit-manure across 46 farms in Iowa. Our results showed that an increased methane production rate was associated with less digestible feed ingredients, suggesting that diet influences the storage pit’s microbiome. Targeted sequencing of the bacterial 16S rRNA and archaeal mcrA genes was used to identify microbial communities’ role and influence. We found that microbial communities in foaming and non-foaming manure were significantly different, and that the bacterial communities of foaming manure were more stable than those of non-foaming manure. Foaming manure methanogen communities were enriched with uncharacterized methanogens whose presence strongly correlated with high methane production rates. We also observed strong correlations between feed ration, manure characteristics, and the relative abundance of specific taxa, suggesting that manure foaming is linked to microbial community assemblage driven by efficient free long-chain fatty acid degradation by hydrogenotrophic methanogenesis.


2002 ◽  
Vol 2002 (5) ◽  
pp. 123-135 ◽  
Author(s):  
José R. Bicudo ◽  
David R. Schmidt ◽  
Wendy Powers ◽  
James A. Zahn ◽  
Carrie L. Tengman ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document