Equilibrium Moisture Content of Hazelnut Husks, Shells, and Kernels

2019 ◽  
Vol 62 (5) ◽  
pp. 1075-1086
Author(s):  
David R. Bohnhoff ◽  
Rhonda K. Bohnhoff

Abstract. Hybrid hazelnuts that are predominately a cross between the American hazelnut () and the European hazelnut () are being grown and evaluated as part of an effort to develop a thriving hazelnut industry for the Upper Midwest of the U.S. Along with this plant development effort, researchers are investigating and assessing various harvesting and processing methods and equipment in an effort to create a robust and food-safe production industry. One harvesting alternative is to pick hazelnut clusters off plants before the nuts fully ripen and fall to the ground, an approach that requires greater attention to drying. Whether entire clusters are dried or the nuts are separated from the husks prior to drying is a decision that will be influenced by the drying requirements and potential uses for these hazelnut fractions. To this end, a study was undertaken to establish desorption isotherms for the husks, shells, and kernels of hybrid hazelnuts grown in the Upper Midwest. Clusters were hand-picked from shrubs in Wisconsin and immediately placed in 18 different controlled environments (six different relative humidity levels at three different temperatures). Actual moisture conditioning took place over saturated salt solutions in specially fabricated biomaterial moisture conditioning units. After a six-week period during which the clusters reached equilibrium with their environment via desorption, they were separated into husk, shell, and kernel fractions and returned to their respective conditioning units. After another six weeks in the conditioning units, the moisture content (MC) of each fraction was determined by oven-drying at 103°C for 48 h. Under equilibrium conditions, the kernel MC was found to be only 37% of that for shells, whereas the equilibrium moisture content (EMC) values for husks were on average 14% greater than those for shells. On a dry basis, the average cluster mass was 32.9% husk, 43.9% shell, and 23.2% kernel. Likewise, on a dry basis, the average whole nut mass was 65.5% shell and 34.5% kernel. The desorption data were fit to the Modified Henderson, Modified Chung-Pfost, Modified Halsey, Modified Oswin, and Modified GAB equations. Overall, the best fit to the experimental data was provided by the Modified Chung-Pfost equation with parameters determined using equilibrium relative humidity (ERH) as the dependent variable in regression analyses. For ERH values above 0.70, the temperature-modified form of the GAB equation is recommended for predicting desorption EMC values for hazelnut fractions. Keywords: Desorption, Equilibrium moisture content, Equilibrium relative humidity, Hazelnuts, Kernels, Nuts, Shells, Water activity.

2019 ◽  
Vol 35 (4) ◽  
pp. 475-479 ◽  
Author(s):  
Jun Sian Lee ◽  
Shahab Sokhansanj ◽  
C. Jim Lim ◽  
Anthony Lau ◽  
Tony Bi

Abstract.The published data on equilibrium moisture content vs. equilibrium relative humidity (EMC-ERH) for wood pellet do not cover the range of temperature and relative humidity to which a pellet is exposed to during its storage and handling. A few published EMC-ERH relations covering a wider range of temperatures and relative humidity are available for solid wood (lumber) and wood chips. The question is whether the data for solid wood is applicable to wood pellets. For this research, we examined the sorption isotherms of wood pellets and solid wood. The analysis shows that EMC for solid wood is higher than the EMC for wood pellet for a relative humidity larger than 30%. The slope of EMC-ERH isotherm for solid wood in the range of 30%-70% is slightly steeper than the slope of isotherm for wood pellet, indicating the pellet’s EMC is less sensitive to ERH when compared to EMC-ERH for solid wood. Keywords: EMC, ERH, Densified biomass, Equilibrium moisture content, Equilibrium relative humidity, Solid wood, Wood pellets.


2021 ◽  
Vol 64 (3) ◽  
pp. 1027-1037
Author(s):  
Lina M Diaz-Contreras ◽  
Rani Puthukulangara Ramachandran ◽  
Stefan Cenkowski ◽  
Jitendra Paliwal

Abstract. This study focuses on the modeling of sorption characteristics of three varieties of soybeans (Akras R2, Lono R2, and Podaga R2). Three pretreatments related to post-harvest conditions were tested on the soybean varieties: (1) freshly harvested soybeans, (2) soybeans subjected to three drying and wetting cycles, and (3) soybeans subjected to three freezing and thawing cycles. The adsorption and desorption experiments were conducted at 5°C, 10°C, 15°C, 20°C, 25°C, and 30°C using a dynamic equilibrium relative humidity (ERH) apparatus. Equilibrium moisture content (EMC) and the corresponding ERH were measured. The parameters calculated for the modified Halsey equation are applicable for storage temperatures above 10°C in the relative humidity (RH) ranges of 10% to 80% for desorption and 30% to 80% for adsorption. No significant differences were found in sorption isotherms among the soybean varieties. However, the soybean varieties responded differently to the different pretreatments (i.e., drying/wetting and freezing/thawing cycles). The adsorption isotherms of Akras and Lono soybeans showed significant differences at 10°C to 30°C when subjected to drying and wetting cycles, while Akras and Podaga soybeans showed significant differences in the same temperature range when subjected to freezing and thawing cycles. The effect of drying and wetting cycles on the desorption isotherms was found only for Akras soybeans at 10°C and 15°C below 63% and 71% RH, respectively, and for Lono soybeans at 25°C and 30°C above 69% RH for both temperatures. In general, the effect of both pretreatments on the sorption isotherms of soybeans was a reduction in EMC of up to 20%, when compared to fresh samples at selected storage temperatures. The findings of this study serve as a primary tool for developing a lookup table for safe storage guidelines for soybeans. Keywords: Equilibrium moisture content, Equilibrium relative humidity, Halsey equation, Oswin equation, Soybeans.


2020 ◽  
Vol 44 ◽  
Author(s):  
Paulo Cesar Corrêa ◽  
Juliana Soares Zeymer ◽  
Gabriel Henrique Horta de Oliveira ◽  
Marcos Eduardo Viana de Araujo ◽  
Camilla Sena da Silva

ABSTRACT It is necessary to determine the sorption isotherms of seeds to develop adequate systems of storage and drying. The chemical composition of a product affects the sorption process; products with a high oil content adsorb a lower amount of moisture from the environment than products with a high carbohydrate content. Given the importance of the hygroscopicity of different agricultural products, this work aimed to determine, model and evaluate the difference between desorption isotherms of ryegrass and flax seeds grown at different temperature and relative humidity conditions. Ryegrass and flax seeds, which contained initial moisture contents of 10.4 and 8.7% (db), respectively, were used. The equilibrium moisture content of the seeds was determined using a static-gravimetric method at different temperatures (10, 20, 30, 40, and 50 ± 1 °C) and relative humidity values (between 11 and 96 ± 2%), in three replicates. Seven mathematical models were adjusted to the equilibrium moisture content experimental data of the seeds. The Chung Pfost model best fit the experimental data of ryegrass seeds, whereas the Smith model was determined to be the best fit for flax seeds. The equilibrium moisture content of the seeds was found to decrease as the temperature increased when the value of water activity was constant. The desorption isotherms of ryegrass seeds (Type II) and flax seeds (Type III) are different, according to Brunauer’s classification, which is caused by the composition (starch and oil content) of each product.


CERNE ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 423-430 ◽  
Author(s):  
Ananias Francisco Dias Júnior ◽  
Lucas Pereira Pirola ◽  
Saly Takeshita ◽  
Artur Queiroz Lana ◽  
José Otávio Brito ◽  
...  

ABSTRACT This research aimed to evaluate hygroscopicity of charcoal produced under four different final carbonization temperatures. For evaluation of hygroscopicity charcoal samples were conditioned in environments with controlled temperature and relative humidity, using saturated salt solutions. The final carbonization temperature significantly influenced the products yields and the properties of charcoal. The charcoal produced in the final temperature of 750 °C showed the highest adsorption capacity of water, indicated by the moisture content after conditioning, in the higher relative humidity environment. Correlations were observed between adsorbed moisture and the porosity of charcoal produced.


Sign in / Sign up

Export Citation Format

Share Document