scholarly journals Design of Improved EWMA Control Chart for Monitoring the Process Mean Using New Median Quartile Double Ranked Set Sampling

Author(s):  
Wasif Yasin ◽  
Muhammad Tayyab ◽  
Muhammad Hanif

It is essential to monitor the mean of a process regarding quality characteristics for the ongoing production. For enhancement of mean monitoring power of the exponentially weighted moving average (EWMA) chart, a new median quartile double ranked set sampling (MQDRSS) based EWMA control chart is proposed and named as EWMA-MQDRSS chart. In order to study the performance of the developed EWMA-MQDRSS chart, performance measures; average run length, and the standard deviation of run length are used. The shift detection ability of the proposed chart has been compared with counterparts, under the simple random sampling and ranking based sampling techniques. The extensive simulation-based results indicate that the EWMA-MQDRSS chart performs better to trace all kinds of shifts than the existing charts. An illustrative application concerning monitoring the diameter of the piston ring of a machine is also provided to demonstrate the practical utilization of the suggested chart.

2018 ◽  
Vol 35 (3) ◽  
pp. 711-728 ◽  
Author(s):  
Jean-Claude Malela-Majika ◽  
Olatunde Adebayo Adeoti ◽  
Eeva Rapoo

Purpose The purpose of this paper is to develop an exponentially weighted moving average (EWMA) control chart based on the Wilcoxon rank-sum (WRS) statistic using repetitive sampling to improve the sensitivity of the EWMA control chart to process mean shifts regardless of the prior knowledge of the underlying process distribution. Design/methodology/approach The proposed chart is developed without any distributional assumption of the underlying quality process for monitoring the location parameter. The authors developed formulae as well as algorithms to facilitate the design and implementation of the proposed chart. The performance of the proposed chart is investigated in terms of the average run-length, standard deviation of the run-length (RL), average sample size and percentiles of the RL distribution. Numerical examples are given as illustration of the design and implementation of the proposed chart. Findings The proposed control chart presents very attractive RL properties and outperforms the existing nonparametric EWMA control chart based on the WRS in the detection of the mean process shifts in many situations. However, the performance of the proposed chart relatively deteriorates for small phase I sample sizes. Originality/value This study develops a new control chart for monitoring the process mean using a two-sample test regardless of the nature of the underlying process distribution. The proposed control chart does not require any assumption on the type (or nature) of the process distribution. It requires a small number of subgroups in order to reach stability in the phase II performance.


2021 ◽  
Vol 36 ◽  
pp. 01002
Author(s):  
Jing Wen Ng ◽  
Voon Hee Wong ◽  
Sook Theng Pang

Exponentially Weighted Moving Average (EWMA) control charts yield insights into data in a way more comprehensible to the practitioners and researchers because of its capability in discovering small to moderate process mean shifts. EWMA control chart is incorporated with conforming run length (CRL) chart, named synthetic EWMA chart, to enhance the performance of the chart in detecting the out-of-control signal. Synthetic EWMA chart based on ranked set sampling (RSS) for monitoring process mean has been proposed as it advanced the detection of chart over a series of mean shifts. With the situation that normality assumption is scarcely attain in practice, we proposed synthetic EWMA median chart based on RSS. Rather than select average run length (ARL) as sole performance evaluating tool, the median and percentiles of run-length distribution are used to examine the performance of the proposed chart as it provides more information on the entire run-length distribution. Near-optimal parameters of the proposed chart will be acquired by setting the incontrol ARL at a designated value. The run length performances of the proposed chart are then compared with the existing charts such as EWMA median chart based on RSS.


2011 ◽  
Vol 11 (04) ◽  
pp. 881-895 ◽  
Author(s):  
RASSOUL NOOROSSANA ◽  
AMIR AFSHIN FATAHI ◽  
PERSHANG DOKOUHAKI ◽  
MASSOUD BABAKHANI

Monitoring rare health events, as a significant public health subject, has been considered recently by different authors. In this regard, different statistical methods such as g-type control chart, Poisson CUSUM control chart, sets-based methods, and Bernoulli CUSUM chart have been developed. Zero-inflated binomial (ZIB) distribution, due to its structure, can also be considered to develop methods for monitoring rare health-related events. If zero inflation is considered in the sampling data, and the sampling subgroup size is mandatory greater than 1, then the data best fits the ZIB distribution and the aforementioned control charts cannot be applied. ZIB distribution assumes that random shocks, corresponding to rare health events, occur and then number of failures in each subgroup fits a binomial distribution. In this paper, an exponentially weighted moving average (EWMA) control chart is applied for ZIB data to develop a ZIB-EWMA chart. Since ZIB-EWMA statistic values are not independent, Markov chain approach is considered to evaluate the performance of the proposed control chart in terms of average run length (ARL). According to the ARL measure, this ZIB-EWMA chart has a better performance in comparison with the methods available in the literature. In addition, a real case study related to rare infections in a hospital is investigated to show the applicability of the proposed control chart.


2016 ◽  
Vol 78 (6-6) ◽  
Author(s):  
Ong Ker Hsin ◽  
Teh Sin Yin ◽  
Khoo Michael Boon Chong ◽  
Teoh Wei Lin ◽  
Soh Keng Lin

The S2-EWMA (called the S square exponentially weighted moving average) control chart is effective in detecting small and moderate process variance shifts. Previously, the chart was designed based on the assumption that the distribution of the quality characteristic is normally distributed. This study designs the S2-EWMA control chart for skewed distributions. The skewed distributions considered in this paper are the lognormal and gamma distributions. The performance of the S2-EWMA control chart is compared with that of the traditional Shewhart S-chart, in terms of median run length (MRL), based on simulation using the Statistical Analysis System (SAS). The results show that regardless of the type of skewed distributions, sample size and skewness level, , in most of the cases, the S2-EWMA chart outperforms the S-chart. Moreover, the findings reveal that the MRL performances of the S-chart and S2-EWMA chart are significantly influenced by skewed distributions.


Author(s):  
Yadpirun SUPHARAKONSAKUN

From the principles of statistical process control, the observations are assumed to be identically and independently normally distributed, although this assumption is frequently untrue in practice. Therefore, control charts have been developed for monitoring and detecting data which are autocorrelated. Recently, a modified exponentially weighted moving average (EWMA) control chart has been introduced that is a correction of the EWMA statistic and is very effective for detecting small and abrupt changes in independent normally distributed or autocorrelated observations. In this study, the performance of a modified EWMA chart is investigated by examining the 2 sides of the exact average run length based on an explicit formula when the observations are from a general-order moving average process with exponential white noise. A performance comparison of the EWMA and the modified EWMA control charts is also presented. In addition, the performance of the modified and EWMA control charts is contrasted using Dow Jones composite average from a real-life dataset. The findings suggest that the modified EWMA control chart is more sensitive than the EWMA control chart for almost every case of the studied smoothing parameter and constant values of the control chart. HIGHLIGHTS Autocorrelation data is frequency untrue of assumption practice in time series data Modified EWMA is a new control chart that is effective for detecting change in independent normal distribution and autocorrelated observations The efficiency of the control chart is measured by average run length Explicit formula is easy to derive and provides the exact value of the average run length


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 173
Author(s):  
Rapin Sunthornwat ◽  
Yupaporn Areepong

The aim of this study was to derive explicit formulas of the average run length (ARL) of a cumulative sum (CUSUM) control chart for seasonal and non-seasonal moving average processes with exogenous variables, and then evaluate it against the numerical integral equation (NIE) method. Both methods had similarly excellent agreement, with an absolute percentage error of less than 0.50%. When compared to other methods, the explicit formula method is extremely useful for finding optimal parameters when other methods cannot. In this work, the procedure for obtaining optimal parameters—which are the reference value ( a ) and control limit ( h )—for designing a CUSUM chart with a minimum out-of-control ARL is presented. In addition, the explicit formulas for the CUSUM control chart were applied with the practical data of a stock price from the stock exchange of Thailand, and the resulting performance efficiency is compared with an exponentially weighted moving average (EWMA) control chart. This comparison showed that the CUSUM control chart efficiently detected a small shift size in the process, whereas the EWMA control chart was more efficient for moderate to large shift sizes.


Production ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Yang Su-Fen ◽  
Tsai Wen-Chi ◽  
Huang Tzee-Ming ◽  
Yang Chi-Chin ◽  
Cheng Smiley

In practice, sometimes the process data did not come from a known population distribution. So the commonly used Shewhart variables control charts are not suitable since their performance could not be properly evaluated. In this paper, we propose a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts in the process with non-normal or unknown distributions. The sampling properties of the new monitoring statistic are explored and the average run lengths of the proposed chart are examined. Furthermore, an Arcsine EWMA Chart is proposed since the average run lengths of the Arcsine EWMA Chart are more reasonable than those of the new EWMA Chart. The Arcsine EWMA Chart is recommended if we are concerned with the proper values of the average run length.


Sign in / Sign up

Export Citation Format

Share Document