scholarly journals Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth

Author(s):  
UMI FATMAWATI ◽  
ANJA MERYANDINI ◽  
ABDJAD ASIH NAWANGSIH ◽  
Aris Tri Wahyudi

Abstract. Fatmawati U, Meryandini A, Nawangsih AA, Wahyudi AT. 2019. Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth. Biodiversitas 20: 2970-2977. Actinomycetes which colonized plant rhizosphere has a vital role in improving plant growth by producing Indole-3-Acetic Acid (IAA). The aim of this study was to evaluate the potency of actinomycetes isolated from soybean rhizosphere as promoter agents for plant growth in vitro. Fifty actinomycetes isolates were successfully isolated from soybean rhizosphere. Based on the colorimetric methods, 35 isolates can produce IAA in various concentration, in the range of 0.46-30.6 mg/L. Seed germination assay using Ragdoll methods revealed that 26 isolates significantly promoted germination parameters, including the hypocotyl and the radicular length, the number of the lateral roots, and dry weight of the plant. Also, 14 from 26 isolates showed phosphate solubilizing activity in different phosphate-solubilizing index ranging from 1.25-2.62. Eight isolates were able to grow in N-free medium, indicating that these isolates have the ability in fixing nitrogen. Out of 23 from 26 isolates were detected to produce siderophore. All the tested isolates show chitinase production except ASR 55. Based on the observed parameters, it showed that there are four potential isolates (ASR 46, ASR 58, ASR 75 and ASR 76) as promising plant-growth promoters, phosphate solubilizer, nitrogen fixer, siderophore and chitinase producer. Based on the result of 16S rRNA sequence analysis, four potential isolates were identified as Streptomyces spp. in different taxa of strains and species.

2020 ◽  
Vol 5 (01) ◽  
pp. 22-33
Author(s):  
Eka Oktaviani ◽  
Rejeki Siti Ferniah ◽  
Arina Tri Lunggani

Rejuvenation and conservation of mangrove ecosystems, especially the Teluk Awur mangrove ecosystem, Jepara Regency, can be done by using bacteria that are capable of supporting plant growth or called Plant Growth Promoting Rhizobacteria (PGPR). One of the mechanisms that support plant growth by the PGPR group is phosphate dissolving activity, because the phosphate in the soil is in the form of a compound that is difficult for plants to absorb. This study aims to determine the character of Rhizobacter isolates as a superior phosphate solvent in dissolving phosphates in-vitro from the Teluk Awur mangrove ecosystem, namely isolates coded EO-4. These isolates have similar microbiological and biochemical characters to the genus Enterobacter. Molecular characterization of isolates was carried out using the Polymerase Chain Reaction (PCR) method - 16S rRNA sequence analysis (comparing with 16S rRNA sequences in gene banks). The results showed that the phosphate-solubilizing rhizobacteria that were isolated had the same base pair percentage of 48% with Enterobacter pyrinus (access number NR_028875).


2021 ◽  
Vol 16 (8) ◽  
pp. 110-117
Author(s):  
Kannan Abhirami ◽  
K. Jayakumar

Phosphorous is considered as a major parameter for crop yield. Its availability to plant is independent of its abundance. For the plants to utilize phosphorous, it is to be converted to absorbable form. Here, the part rendered by phosphate solubilizing bacteria is significant for it plays a crucial role in the formation of plant usable phosphate from organic forms. In the present work, an effort had been made to isolate and identify phosphate solubilising bacterial isolate from the rhizhospheric soils of various plants in Ponthenpuzha forest. One of the isolate from Cymbopogon citrates responded positively to Pikovskaya’s medium by producing a halo zone during in vitro culture. Colony features and 16S rRNA sequence analysis identified the isolate as Burkholderia sps. We have reported the presence of genus Burkholderia in the rhizospheric zone of Cymbopogon citratus. Further studies are warranted for species level identification of the isolate.


Author(s):  
Rajiv Pathak ◽  
Vipassana Paudel ◽  
Anupama Shrestha ◽  
Janardan Lamichhane ◽  
Dhurva. P. Gauchan

Phosphorous (P) is an essential macronutrient and most soils contain high levels of P. However, its availability to plant is limited by rapid immobilization of phosphorous compounds to insoluble forms and hence plant available forms of P in soils are found in low amounts. Phosphate solubilizing bacteria provide an eco-friendly alternative to convert insoluble phosphates into plant available forms. In the present study, three phosphate solubilizing bacterial isolates (PB-1, PB-4 and VC-01) with visually significant phosphate solubilizing abilities were isolated from tomato rhizosphere soil. In-vitro study in pikovskaya’s agar revealed that isolate PB-1 had the highest phosphate solubilizing ability with a phosphate solubilizing index of 2.08±0.07 followed by isolate VC-01 (1.31±0.09) and PB-4 (1.24±0.08). Isolates were used as bacterial inoculum to assess their ability to promote tomato (Lycopersicon esculentum var. Srijana) seedling and plant growth in in-vitro and greenhouse experiment respectively. Isolate PB-4 showed best growth promotion in seedling assay whereas isolate PB-1 and VC-01 also promoted seedling growth compared to control. In greenhouse experiment however, isolates VC-01 and PB-1 significantly enhanced all parameters (shoot length, root length, shoot and root dry weight) compared to uninoculated control whereas isolate PB-4 had a positive effect on all parameters except root length.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 2, 2017, page: 61-70


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Balayogan Sivasankari ◽  
Marimuthu Anandharaj

Vermicompost was prepared from leaf materials ofGliricidia sepium+Cassia auriculata+Leucaena leucocephalawith cow dung (1 : 1 : 2) usingEudrilus eugeniae(Kinberg) andEisenia fetidafor 60 days. Nineteen bacterial strains which have the capability to fix nitrogen, solubilize inorganic phosphate, and produce phytohormones were isolated from vermicompost, vermisources, and earthworm (fore, mid, and hind) guts and tested for plant growth studies. Among the bacterial strains only five strains had both activities; among the fiveBacillusspp. showed more nitrogen fixing activity andPseudomonasspp. showed more phosphate solubilizing activity. Hence these bacterial strains were selected for further molecular analysis and identifiedBacillus cereusGGBSTD1 andPseudomonasspp. GGBSTD3. Plant growth studies use these two organisms separately and as consortium (Bacillus cereus+Pseudomonasspp.) in (1 : 1) ratio at different concentrations usingVigna unguiculata(L.) Walp. at different day intervals. The germination percent, shoot length, root length, leaf area, chlorophyll a content of the leaves, chlorophyll b content of the leaves, total chlorophyll content of the leaves, fresh weight of the whole plant, and dry weight of the whole plant were significantly enhanced by the consortium (Bacillus cereus+Pseudomonasspp.) of two organisms at 5 mL concentrations on the 15th day compared to others.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 222
Author(s):  
Abdulaziz A. Al-Askar ◽  
WesamEldin I. A. Saber ◽  
Khalid M. Ghoneem ◽  
Elsayed E. Hafez ◽  
Amira A. Ibrahim

Presently, the bioprocessing of agricultural residues to various bioactive compounds is of great concern, with the potential to be used as plant growth promoters and as a reductive of various diseases. Lycopersiconesculentum, one of the most consumed crops in the human diet, is attacked by Fusarium wilt disease, so the main aim is to biocontrol the pathogen. Several fungal species were isolated from decayed maize stover (MS). Trichodermaasperellum was chosen based on its organic acid productivity and was molecularly identified (GenBank accession number is MW195019). Citric acid (CA) was the major detected organic acid by HPLC. In vitro, CA of T.asperellum at 75% completely repressed the growth of Fusariumoxysporum f. sp. lycopersici (FOL). In vivo, soaking tomato seeds in CA enhanced the seed germination and vigor index. T. asperellum and/or its CA suppressed the wilt disease caused by FOL compared to control. There was a proportional increment of plant growth and yield, as well as improvements in the biochemical parameters (chlorophyll pigments, total phenolic contents and peroxidase, and polyphenol oxidase activities), suggesting targeting both the bioconversion of MS into CA and biological control of FOL.


Author(s):  
Raoul Emeric Guetiya Wadoum ◽  
Fonteh Anyangwe Florence ◽  
Kaktcham Pierre Marie ◽  
Ulrich Landry Bemmo Kamdem ◽  
Chancel Hector Momo Kenfack ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 5161-5173

Phosphorus (P) is one of the essential macronutrients needed for the plant growth, other than nitrogen and potassium. Most phosphorus remains as insoluble form in soils and the plants only can uptake the phosphorus nutrient in soluble forms. Phosphate solubilizing bacteria (PSB) dissolves the phosphorus and make it available for plants. In this study, Soil samples were collected and screened for PSB on PK medium. PSB colonies with the highest phosphate solubilization ability were chosen and used for studying its rhizosphere effect on Capsicum frutescens by pot experiment.. It was evidenced that selected PSB strain could solubilize phosphate in PK medium and modified PK broth. Besides, it provided available phosphorus for plants and enhanced the plant growth in pot experiment.


Author(s):  
K Sunand ◽  
K Vinay Kumar ◽  
K Ashwini ◽  
P Suresh Kumar ◽  
S Vishnu ◽  
...  

Aim: To synthesize and evaluate 4-aminoantipyrine related schiff’s bases as antibacterial agents. Objective: To synthesize, purify, characterize and evaluate 4-aminoantipyrine. Method: Schiff bases derived from 4-aminoantipyrine play a vital role in biological and pharmacological activities. Knowing the importance of 4-aminoatipyrine schiff bases and their analogues wide varieties of bioactivities like analgesic, antiviral, antipyretic, anti-rheumatic, antimicrobial and anti-inflammatory activities have been widely studied. 4-aminoantipyrine compounds C1 (anisaldehyde), C2 (p-hydroxybenzaldehyde) and C3(vanillin) were prepared by condensation between 4-amino antipyrine and substituted aromatic benzaldehydes. The products were purified by recrystallization by using ethanol, characterized by IR spectroscopy. The N-H stretching in 4-aminoantipyrine is shown at 3430 cm-1 and -3325 cm-1. The -HC=N- stretching is observed in the range of 1508-1504 cm-1 The –OCH3 stretching is found at 1888 cm-1. 4-amino antipyrine related schiff’s bases evaluated their activity as antimicrobials in-vitro by spread plate method against E.coli. Schiff bases have potent antibacterial activity with gram negative bacteria E.coli. Results: Synthesis and characterization of a schiff bases derived from substituted benzaldehydes and 4-aminoantipyrine was evaluated and characterized with the IR spectroscopic techniques and schiff bases have shown potent antibacterial activity against E.Coli.


2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document