ABSTRACT: Occurrence and Structural Control of Hydrocarbon Production Associated with the Baton Rouge Fault Zone, Louisiana

AAPG Bulletin ◽  
2002 ◽  
Vol 86 ◽  
Author(s):  
Byron Miller1, Richard P. McCulloh1
2016 ◽  
Author(s):  
Torbjörn E. Tornqvist ◽  
◽  
Zhixiong Shen ◽  
Nancye H. Dawers ◽  
Nicole M. Gasparini ◽  
...  

2009 ◽  
Vol 49 (1) ◽  
pp. 337 ◽  
Author(s):  
Georgina Ryan ◽  
George Bernardel ◽  
John Kennard ◽  
Andrew T Jones ◽  
Graham Logan ◽  
...  

Numerous Miocene reefs and related carbonate build-ups have been identified in the Rowley Shoals region of the central North West Shelf, offshore Western Australia. The reefs form part of an extensive Miocene reef tract over 1,600 km long, which extended northward into the Browse and Bonaparte basins and southward to North West Cape in the Carnarvon Basin—comparable in length to the modern Great Barrier Reef. Growth of the vast majority of these Miocene reefs failed to keep pace with relative sea-level changes in the latest Miocene, whereas reef growth continued on the central North West Shelf to form the three present-day atolls of the Rowley Shoals: Mermaid, Clerke and Imperieuse reefs. In the Rowley Shoals region, scattered small build-ups and local reef complexes were first established in the Early Miocene, but these build-ups were subsequently terminated at a major Mid Miocene sequence boundary. Widespread buildups and atoll reefs were re-established in the Middle Miocene, and the internal stacking geometries of the reefs appear to relate to distinct growth phases that are correlated with eustatic sea-level fluctuations. These geometries include: a basal aggradational buildup of early Middle Miocene age; a strongly progradational growth phase in the late Middle to early Late Miocene that constructed large reef atolls with infilling lagoon deposits; and a back-stepped aggradational growth phase that formed smaller reef caps in the early–latest Late Miocene. Growth of the majority of the reefs ceased at a major sea-level fall in the Late Miocene (Messinian), and only the reefs of the present-day Rowley Shoals (Mermaid, Clerke and Imperieuse reefs, as well as a drowned shoal to the southwest of Imperieuse Reef) continued to grow after this event. Growth of the Rowley Shoals reefs continued to keep pace with Pliocene-Recent sea-level changes, whereas the surrounding shelf subsided to depths of 230–440 m. We conclude that initial reef growth in the Rowley Shoals region was controlled by transpressional reactivation and structuring of the Mermaid Fault Zone during the early stage of collision between the Australian and Eurasian plates. During this structural reactivation, seabed fault scarps and topographic highs likely provided ideal sites for the initiation of reef growth. The subsequent growth and selective demise of the reefs was controlled by the interplay of eustatic sea-level variations and differential subsidence resulting from continued structural reactivation of the Mermaid Fault Zone. In contrast to models proposed in other regions, there is no direct evidence that active or palaeo hydrocarbon seepage triggered or controlled growth of the Rowley Shoals reefs or their buried Miocene predecessors.


2021 ◽  
Author(s):  
Mostafa Thabet

Abstract In the present study, observed active fault zone related site amplification is calculated based on Fourier acceleration spectrum (FAS) at three different localities in Japan. For this purpose, the FASs are calculated using 26432 earthquakes recorded at 126 K-NET and KiK-net seismic stations, which are distributed on the fault zones and upthrown and downthrown sides. This observed amplification is strongly frequency-dependent because of the presence of the near-surface low-velocity flower fault structure and the deeper fault zone. Moreover, the amplification patterns at each study area are tectonic-specific patterns. Sources inside the active fault zones could produce amplification at high frequencies at stations on both fault zone and far away from the fault zone. This is because of the impact of the near-surface fault zone. Sources outside the active fault zones could not produce significant amplification at high frequencies, whereas remarkable high amplification at low frequencies exhibits a gradual increase through stations on hanging walls, fault zones, and footwalls. Remarkably, low-frequency amplification due to sources outside the active fault zones at stations on footwalls is much higher than those observed on hanging walls. Interestingly, the peaks of the low-frequency amplification are corresponding to wavelengths that approximately equalize the width of the fault zone. Diffuse field theory inversion using earthquake horizontal-to-vertical spectral ratio (EHVSR) could successfully detect the presence of fault zone low-velocity layers. However, analyzing the fault zone related site effects using HVSR is not effective because of the strong amplification related structural control of the active fault zones on the ground motions.


2021 ◽  
Author(s):  
Mostafa Thabet

Abstract Observed active fault zone related site amplification is calculated based on Fourier acceleration spectrum (FAS) at three different localities in Japan. The FASs are calculated using 26432 earthquakes recorded at 126 K-NET and KiK-net seismic stations, which are distributed on the fault zones, upthrown and downthrown sides. This observed amplification is strongly frequency-dependent because of the presence of the near-surface low-velocity flower fault structure and the deeper fault zone. Moreover, the amplification patterns at each study area are tectonic-specific patterns. Sources inside the active fault zones could produce amplification at high frequencies at stations on both fault zone and far away from the fault zone, because of the impact of the near-surface fault zone. Sources outside the active fault zones yield remarkable high amplification at low frequencies exhibiting a gradual increase through stations on hanging walls, fault zones, and footwalls. Interestingly, the peaks of the low-frequency amplification are corresponding to wavelengths that approximately equalize the width of the fault zone. The presence of fault zone low-velocity layers could be successfully detected by the diffuse field theory inversion.


Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document