scholarly journals Observed Evidences of Frequency-Dependent Site Amplification Due to Structural Control of Active Reverse Faults at Different Localities in Japan

Author(s):  
Mostafa Thabet

Abstract Observed active fault zone related site amplification is calculated based on Fourier acceleration spectrum (FAS) at three different localities in Japan. The FASs are calculated using 26432 earthquakes recorded at 126 K-NET and KiK-net seismic stations, which are distributed on the fault zones, upthrown and downthrown sides. This observed amplification is strongly frequency-dependent because of the presence of the near-surface low-velocity flower fault structure and the deeper fault zone. Moreover, the amplification patterns at each study area are tectonic-specific patterns. Sources inside the active fault zones could produce amplification at high frequencies at stations on both fault zone and far away from the fault zone, because of the impact of the near-surface fault zone. Sources outside the active fault zones yield remarkable high amplification at low frequencies exhibiting a gradual increase through stations on hanging walls, fault zones, and footwalls. Interestingly, the peaks of the low-frequency amplification are corresponding to wavelengths that approximately equalize the width of the fault zone. The presence of fault zone low-velocity layers could be successfully detected by the diffuse field theory inversion.

2021 ◽  
Author(s):  
Mostafa Thabet

Abstract In the present study, observed active fault zone related site amplification is calculated based on Fourier acceleration spectrum (FAS) at three different localities in Japan. For this purpose, the FASs are calculated using 26432 earthquakes recorded at 126 K-NET and KiK-net seismic stations, which are distributed on the fault zones and upthrown and downthrown sides. This observed amplification is strongly frequency-dependent because of the presence of the near-surface low-velocity flower fault structure and the deeper fault zone. Moreover, the amplification patterns at each study area are tectonic-specific patterns. Sources inside the active fault zones could produce amplification at high frequencies at stations on both fault zone and far away from the fault zone. This is because of the impact of the near-surface fault zone. Sources outside the active fault zones could not produce significant amplification at high frequencies, whereas remarkable high amplification at low frequencies exhibits a gradual increase through stations on hanging walls, fault zones, and footwalls. Remarkably, low-frequency amplification due to sources outside the active fault zones at stations on footwalls is much higher than those observed on hanging walls. Interestingly, the peaks of the low-frequency amplification are corresponding to wavelengths that approximately equalize the width of the fault zone. Diffuse field theory inversion using earthquake horizontal-to-vertical spectral ratio (EHVSR) could successfully detect the presence of fault zone low-velocity layers. However, analyzing the fault zone related site effects using HVSR is not effective because of the strong amplification related structural control of the active fault zones on the ground motions.


2021 ◽  
Author(s):  
JD Eccles ◽  
AK Gulley ◽  
PE Malin ◽  
CM Boese ◽  
John Townend ◽  
...  

© 2015. American Geophysical Union. All Rights Reserved. Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35Hz) have been recorded on shallow borehole seismometers installed within 20m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.


2019 ◽  
Vol 10 (2) ◽  
pp. 561-567
Author(s):  
N. F. Vasilenko ◽  
A. S. Prytkov

In the northern Sakhalin Island, the tectonic activity of the fault zones is a potential threat to the industrial infrastructure of the petroleum fields. Recently, the background seismicity has increased at the Hokkaido‐Sakhalin fault that consists of several segments, including the Garomai active fault. In the studies of the regional deformation processes, it is important not only to analyze the seismic activity, but also to quantitatively assess the dynamics of deformation accumulation in the fault zones. In order to study the contemporary geodynamics of the Garomai fault, a local GPS/GLONASS network has been established in the area wherein trunk oil and gas pipelines are installed across the fault zone. Based on the annual periodic measurements taken in 2006–2016, we study the features of surface deformation and calculate the rates of displacements caused by the tectonic activity in the fault zone. During the survey period, no significant displacement of the fault wings was revealed. In the immediate vicinity of the fault zone, multidirectional horizontal displacements occur at a rate up to 1.6 mm/yr, and uplifting of the ground surface takes place at a rate of 3.4 mm/yr. This pattern of displacements is a reflection of local deformation processes in the fault zone. At the western wing of the fault, a maximum deformation rate amounts to 1110–6 per year. The fault is a boundary mark of a transition from lower deformation rates at the eastern wing to higher ones at the west wing. In contrast to the general regional compression setting that is typical of the northern Sakhalin Island, extension is currently dominant in the Garomai fault zone. The estimated rates of relative deformation in the vicinity of the Garomai fault give grounds to classify it as ‘hazardous’.


2021 ◽  
Author(s):  
Irène Aubert ◽  
Juliette Lamarche ◽  
Philippe Leonide

<p>Understanding the impact of fault zones on reservoir trap properties is a major challenge for a variety of geological ressources applications. Fault zones in cohesive rocks are complex structures, composed of 3 components: rock matrix, damage zone fractures and fault core rock. Despite the diversity of existing methods to estimate fault zone permeability/drain properties, up to date none of them integrate simultaneously the 3 components of fracture, fault core and matrix permeability, neither their evolution with time. We present a ternary plot that characterizes the fault zones permeability as well as their drainage properties. The ternary plot aims at (i) characterizing the fault zone permeability between the three vertices of matrix, fractures and fault core permeability ; and at (ii) defining the drain properties among 4 possible hydraulic system: (I) good horizontal and vertical, fault-perpendicular and -parallel; (II) moderate parallel fluid pathway; (III) good parallel fault-core and (IV) good parallel fractures. The ternary plot method is valid for 3 and 2 components fault zones. The application to the Castellas Fault case study show the simplicity and efficiency of the plot for studying underground and/or fossil, simple or polyphase faults in reservoirs with complete or limited permeability data.</p>


2017 ◽  
Vol 12 (5) ◽  
pp. 899-915 ◽  
Author(s):  
Shohei Naito ◽  
Ken Xiansheng Hao ◽  
Shigeki Senna ◽  
Takuma Saeki ◽  
Hiromitsu Nakamura ◽  
...  

In the 2016 Kumamoto earthquake, the Futagawa fault zone and the Hinagu fault zone were active in some sections, causing severe damage in neighboring areas along the faults. We conducted a detailed investigation of the surface earthquake fault, building damage, and site amplification of shallow ground within about 1 km of the neighboring areas of the fault. The focus was mainly on Kawayou district, Minamiaso village and Miyazono district, Mashiki town, and locations that suffered particularly severe building damage. We explored the relationship between local strong motion and building damage caused in areas that were in the immediate vicinity of the active fault.


2017 ◽  
Vol 5 (4) ◽  
pp. SP71-SP82 ◽  
Author(s):  
Dmitriy R. Kolyukhin ◽  
Vadim V. Lisitsa ◽  
Maxim I. Protasov ◽  
Dongfang Qu ◽  
Galina V. Reshetova ◽  
...  

Interpretation of seismic responses from subsurface fault zones is hampered by the fact that the geologic structure and property distributions of fault zones can generally not be directly observed. This shortcoming curtails the use of seismic data for characterizing internal structure and properties of fault zones, and it has instead promoted the use of interpretation techniques that tend to simplify actual structural complexity by rendering faults as lines and planes rather than volumes of deformed rock. Facilitating the correlation of rock properties and seismic images of fault zones would enable active use of these images for interpreting fault zones, which in turn would improve our ability to assess the impact of fault zones on subsurface fluid flow. We use a combination of 3D fault zone models, based on empirical data and 2D forward seismic modeling to investigate the link between fault zone properties and seismic response. A comparison of spatial statistics from the geologic models and the seismic images was carried out to study how well seismic images render the modeled geologic features. Our results indicate the feasibility of extracting information about fault zone structure from seismic data by the methods used.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251606
Author(s):  
Bo Shao ◽  
Guiting Hou ◽  
Jun Shen

In this paper, we focus on why intraplate seismic initiation and migration occurs, which has widely been considered to be caused by static stress triggering caused by earthquakes, as well as post-seismic slips. To illustrate the mechanism underlying large earthquakes, in particular the migration caused by two key episodes that occurred after 1500 in the Bohai-Zhangjiakou Fault Zone (BZFZ) of North China, we developed a high-resolution three-dimensional viscoelastic finite element model that includes the active faults with vertical segmentation, their periodical locking, and the lithosphere heterogeneity. We used the birth and death of element groups to simulate stress intensity changes during the two episodes (named Episode I and II), with our results showing that the Tangshan earthquake was primarily triggered by the Sanhe-Pinggu M8.0 earthquake in 1679, whereas the Zhangbei M6.2 earthquake in 1998 was not triggered by earthquakes in Episode I. According to our work, the calculated stress changes in the different segments of the fault zone correspond to the magnitude of the triggered earthquakes. Further, the largest stress decrease was near the Sanhe-Pinggu fault and occurred the largest earthquake in Episode I, whereas the largest stress increase was near the Tangshan fault and occurred during the largest earthquake in Episode II. Given the above, we propose a model for seismic migration to describe the dynamic mechanisms of earthquake migration within the BZFZ and North China, in which the factors affecting both the seismic migration path and intensity primarily include the distance between the triggered active fault and the original fault, the coupling of the active faults, the location and scale of the low-velocity anomaly, its distance from the active fault, and the location and scale of the crustal thinning.


1990 ◽  
Vol 80 (5) ◽  
pp. 1245-1271 ◽  
Author(s):  
Y.-G. Li ◽  
P. C. Leary

Abstract Two instances of fault zone trapped seismic waves have been observed. At an active normal fault in crystalline rock near Oroville in northern California, trapped waves were excited with a surface source and recorded at five near-fault borehole depths with an oriented three-component borehole seismic sonde. At Parkfield, California, a borehole seismometer at Middle Mountain recorded at least two instances of the fundamental and first higher mode seismic waves of the San Andreas fault zone. At Oroville recorded particle motions indicate the presence of both Love and Rayleigh normal modes. The Love-wave dispersion relation derived for an idealized wave guide with velocity structure determined by body-wave travel-time inversion yields seismograms of the fundamental mode that are consistent with the observed Love-wave amplitude and frequency. Applying a similar velocity model to the Parkfield observations, we obtain a good fit to the trapped wavefield amplitude, frequency, dispersion, and mode time separation for an asymmetric San Andreas fault zone structure—a high-velocity half-space to the southwest, a low-velocity fault zone, a transition zone containing the borehole seismometer, and an intermediate velocity half-space to the northeast. In the Parkfield borehole seismic data set, the locations (depth and offset normal to fault plane) of natural seismic events which do or do not excite trapped waves are roughly consistent with our model of the low velocity zone. We conclude that it is feasible to obtain near-surface borehole records of fault zone trapped waves. Because trapped modes are excited only by events close to the fault zone proper—thereby fixing these events in space relative to the fault—a wider investigation of possible trapped mode waveforms recorded by a borehole seismic network could lead to a much refined body-wave/tomographic velocity model of the fault and to a weighting of events as a function of offset from the fault plane. It is an open question whether near-surface sensors exist in a stable enough seismic environment to use trapped modes as an earth monitoring device.


2017 ◽  
Vol 43 (2) ◽  
pp. 829 ◽  
Author(s):  
I. Mariolakos ◽  
V. Nikolopoulos ◽  
I. Bantekas ◽  
N. Palyvos

At a newly discovered archaeological site at Aghios Taxiarches in Northern Euboea, two votive inscribed stelae were found in 2001 together with hellenistic pottery next to ancient wall ruins on a steep and high rocky slope. Based on the inscriptions and the geographical location of the site we propose the hypothesis that this is quite probably the spot where the oracle of “Apollo Selinountios” (mentioned by Strabo) would stand in antiquity. The wall ruins of the site are found on a very steep bedrock escarpment of an active fault zone, next to a hanging valley, a high waterfall and a cave. The geomorphological and geological environment of the site is linked directly to the regional geodynamical context of Central Greece, a region of tectonic turmoil throughout the Pleistocene and Holocene, characterised by distinct landscapes produced by the activity of active fault zones, intense seismicity, and in part, volcanism and hydrothermal activity. The geomorphological and geological similarities of the Ag. Taxiarches site with those of the oracle at Delphi, seem to provide further support to the hypothesis that the former site can well be that of an ancient oracle, given the recently established connections between the geological environment at Delphi and Apollo’s oracle there. Definitive verification of our hypothesis can only be obtained by further, detailed archaeological study, whereas geological/geomorphological, geochemical, and geochronological studies would be necessary to clarify the connection that the cave lying next to the wall remains may had with the site’s function.


1971 ◽  
Vol 61 (1) ◽  
pp. 109-145 ◽  
Author(s):  
J. R. Murphy ◽  
A. H. Davis ◽  
N. L. Weaver

abstract Frequency-dependent amplification of seismic waves by near-surface low-velocity layers is a well-known phenomenon. This phenomenon was examined from both the analytic and experimental viewpoints for body waves (P, SV, SH). Groundmotion data, recorded in conjunction with the underground nuclear testing program at the Nevada Test Site, are used to provide experimental validation of the analytic models. Experimental amplification factors are derived from these data for a variety of recording-site near-surface geological configurations (alluvium, mine tailings, fill) and a wide dynamic range of ground-motion intensity (10−5 to 100 g). The variability in the mean amplification observed at a site for repeated measurements is described statistically. This analysis shows that, although the amplification at a given site varies on the average by a factor of about 1.4 across the frequency band of interest, from detonation to detonation, the frequency and magnitude of the dominant amplification are fairly consistent. The quality of the comparisons of the observed and calculated amplification indicates that the available linear analytic models are capable of describing the major features of the frequency-dependent amplification observed for this wide range of groundmotion intensity and recording-site geology.


Sign in / Sign up

Export Citation Format

Share Document