Sedimentology, Organic Geochemistry, and Petroleum Potential of Jurassic Coal Measures: Tarim, Junggar, and Turpan Basins, Northwest China

AAPG Bulletin ◽  
1995 ◽  
Vol 79 ◽  
Author(s):  
Marc S. Hendrix (2), Simon C. Brass
2016 ◽  
Vol 90 (6) ◽  
pp. 2117-2132 ◽  
Author(s):  
Yangquan JIAO ◽  
Liqun WU ◽  
Hui RONG ◽  
Yunbiao PENG ◽  
Aisheng MIAO ◽  
...  

2018 ◽  
Vol 36 (4) ◽  
pp. 801-819 ◽  
Author(s):  
Shuangfeng Zhao ◽  
Wen Chen ◽  
Zhenhong Wang ◽  
Ting Li ◽  
Hongxing Wei ◽  
...  

The condensate gas reservoirs of the Jurassic Ahe Formation in the Dibei area of the Tarim Basin, northwest China are typical tight sandstone gas reservoirs and contain abundant resources. However, the hydrocarbon sources and reservoir accumulation mechanism remain debated. Here the distribution and geochemistry of fluids in the Ahe gas reservoirs are used to investigate the formation of the hydrocarbon reservoirs, including the history of hydrocarbon generation, trap development, and reservoir evolution. Carbon isotopic analyses show that the oil and natural gas of the Ahe Formation originated from different sources. The natural gas was derived from Jurassic coal measure source rocks, whereas the oil has mixed sources of Lower Triassic lacustrine source rocks and minor amounts of coal-derived oil from Jurassic coal measure source rocks. The geochemistry of light hydrocarbon components and n-alkanes shows that the early accumulated oil was later altered by infilling gas due to gas washing. Consequently, n-alkanes in the oil are scarce, whereas naphthenic and aromatic hydrocarbons with the same carbon numbers are relatively abundant. The fluids in the Ahe Formation gas reservoirs have an unusual distribution, where oil is distributed above gas and water is locally produced from the middle of some gas reservoirs. The geochemical characteristics of the fluids show that this anomalous distribution was closely related to the dynamic accumulation of oil and gas. The period of reservoir densification occurred between the two stages of oil and gas accumulation, which led to the early accumulated oil and part of the residual formation water being trapped in the tight reservoir. After later gas filling into the reservoir, the fluids could not undergo gravity differentiation, which accounts for the anomalous distribution of fluids in the Ahe Formation.


2020 ◽  
Vol 60 (2) ◽  
pp. 722
Author(s):  
Amber J. M. Jarrett ◽  
Adam E. H. Bailey ◽  
Christopher J. Boreham ◽  
Tehani Palu ◽  
Lisa Hall ◽  
...  

The Lawn Hill Platform (LHP) is a sedimentary province in north-eastern Northern Territory and north-western Queensland that hosts a significant Paleoproterozoic–Mesoproterozoic sequence, often referred to as 'the ‘Isa Superbasin’, and includes the overlying South Nicholson Group. Shale gas resources and base-metals mineralisation are known in north-west Queensland, but the larger basin is underexplored. The Australian Government’s Exploring for the Future (EFTF) 2016−2020 program aims to boost resource exploration in northern Australia. New precompetitive geochemical data obtained in this program includes source rock geochemistry, kerogen kinetics, bitumen reflectance, biomarker and δ13C n-alkanes for understanding the petroleum potential, organic geochemistry of source rocks and fluids, stratigraphic correlations and mineralogy to determine the brittleness of shales. All data and derived reports are accessible on the EFTF portal (www.eftf.ga.gov.au), providing a central location for informed decision making. The results in this study demonstrate fair to excellent source rocks in multiple supersequences that are brittle and favourable to hydraulic stimulation. A comparison to the greater McArthur Basin demonstrates, that although there are many similarities in bulk geochemistry, LHP mudstones are largely heterogeneous, reflecting local variations that may be inherited from variations in contributing biomass, microbial reworking, depositional environment, sediment input and paleoredox conditions.


AAPG Bulletin ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 335-355 ◽  
Author(s):  
Longyi Shao ◽  
Pengfei Zhang ◽  
Jason Hilton ◽  
Rod Gayer ◽  
Yanbin Wang ◽  
...  

2009 ◽  
Vol 49 (1) ◽  
pp. 383 ◽  
Author(s):  
Chris Uruski

The offshore Northland Basin is a major sedimentary accumulation lying to the west of the Northland Peninsula of New Zealand. It merges with the Taranaki Basin in the south and its deeper units are separated from Deepwater Taranaki by a buried extension of the West Norfolk Ridge. Sedimentary thicknesses increase to the northwest and the Northland Basin may extend into Reinga. Its total area is at least 65,000 km2 and if the Reinga Basin is included, it may be up to 100,000 km2. As in Taranaki, petroleum systems of the Northland Basin were thought to include Cretaceous to Recent sedimentary rocks. Waka Nui–1 was drilled in 1999 and penetrated no Cretaceous sediments, but instead drilled unmetamorphosed Middle Jurassic coal measures. Economic basement may be older meta-sediments of the Murihiku Supergroup. Thick successions onlap the dipping Jurassic unit and a representative Cretaceous succession is likely to be present in the basin. Potential source rocks known to be present include the Middle Jurassic coal measures of Waka Nui–1 and the Waipawa Formation black shale. Inferred source rocks include Late Jurassic coaly rocks of the Huriwai Beds, the Early Cretaceous Taniwha Formation coaly sediments, possible Late Cretaceous coaly units and lean but thick Late Cretaceous and Paleogene marine shales. Below the voluminous Miocene volcanoes of the Northland arc, the eastern margin of the basin is dominated by a sedimentary wedge that thickens to more than two seconds two-way travel time (TWT), or at least 3,000 m, at its eastern margin and appears to have been thrust to the southwest. This is interpreted to be a Mesozoic equivalent of the Taranaki Fault, a back-thrust to subduction along the Gondwana Margin. The ages of sedimentary units in the wedge are unknown but are thought to include a basal Jurassic succession, which dips generally to the east and is truncated by an erosional unconformity. A southwestwards-prograding succession overlies the unconformity and its top surface forms a paleoslope onlapped by sediments of Late Cretaceous to Neogene ages. The upper succession in the wedge may be of Early Cretaceous age—perhaps the equivalent of the Taniwha Formation or the basal succession in Waimamaku–2. The main part of the basin was rifted to form a series of horst and graben features. The age of initial rifting is poorly constrained, but the structural trend is northwest–southeast or parallel to the Early Cretaceous rifting of Deepwater Taranaki and with the Mesozoic Gondwana margin. Thick successions overlie source units which are likely to be buried deeply enough to expel oil and gas, and more than 70 slicks have been identified on satellite SAR data suggesting an active petroleum system. Numerous structural and stratigraphic traps are present and the potential of the Northland Basin is thought to be high.


Sign in / Sign up

Export Citation Format

Share Document