Transmission Electron Microscopy, Gas Adsorption, and High-Pressure Mercury Porosimetry Used to Describe Monterey Silica Diagenesis: ABSTRACT

AAPG Bulletin ◽  
1986 ◽  
Vol 70 ◽  
Author(s):  
David C. Hurd
1993 ◽  
Vol 58 (2) ◽  
pp. 365-372
Author(s):  
Galina A. Tishchenko ◽  
Miroslav Bleha ◽  
Věra Tyráčková ◽  
Tatyana E. Sukhanova ◽  
Svetlana A. Gulevskaya ◽  
...  

The morphology of polyacrylonitrile composite membranes containing microdispersions of ion exchange resins was investigated by gas adsorption, mercury porosimetry, and scanning and transmission electron microscopy. The relation between the structure, hydration and permeability of composite membranes at the transmembrane difference of pH and pNa was studied.


Microscopy ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 30-36
Author(s):  
Hiroyuki Iwata ◽  
Daisuke Kawaguchi ◽  
Hiroyasu Saka

Abstract Internal modification induced in Si by a permeable pulse laser was investigated by transmission electron microscopy. A laser induced modified volume (LIMV) was a cylindrical rod along the track of a laser beam with the head at the focus of the laser beam. In the LIMV, beside voids, dislocations, micro-cracks and what had been supposed to be an unidentified high-pressure phase (hpp) of Si were observed in LIMV. The so-called ‘hpp’ was identified mostly as diamond Si.


2000 ◽  
Vol 638 ◽  
Author(s):  
R. Goswami ◽  
J. Parise ◽  
H. Herman ◽  
S. Sampath ◽  
R. Gambino ◽  
...  

AbstractShock synthesis of nanocrystalline Si, Ge and CdTe was accomplished using high- velocity thermal spray. Si or Ge powders were injected into a high energy flame, created by a thermal spray gun, where the particles melt and accelerate to impact on a substrate. The shock wave generated by the sudden impact of the droplets propagated through the underlying deposits, which induces a phase transition to a high pressure form. The decompression of the high-pressure phase results in the formation of several metastable phases, as evidenced by transmission electron microscopy and x-ray diffraction studies. The peak pressure is estimated to be ≈23GPa with a pulse duration of 1-5 ns. Transmission electron microscopy revealed that the metastable phases of Si with a size range of 2 to 5 nm were dispersed within Si-I. In Ge, a metastable phase, ST-12, was observed. This is a decompression product of Ge-II which possesses the β-Sn type of structure. In the case of CdTe, a fine dispersion of hexagonal CdTe particles, embedded in cubic-CdTe with an average size of 2 nm was obtained.


2001 ◽  
Vol 16 (7) ◽  
pp. 1960-1966 ◽  
Author(s):  
K. Miyazawa ◽  
H. Satsuki ◽  
M. Kuwabara ◽  
M. Akaishi

The structure and hardness of C60 bulk specimens compressed under 5.5 GPa at room temperature to 600 °C are investigated by high-resolution transmission electron microscopy, x-ray diffraction, and micro-Vickers hardness tests. A strong accumulation of the [1 1 0]tr orientation of high-pressure-treated C60 specimens was developed along the compression axis, and stacking faults and nano-sized deformation twins were introduced into the C60 specimens compressed at 450–600 °C. Curved lattice planes indicating a polymerization of C60 were observed by high resolution transmission electron microscopy (HRTEM). The polymerization of the high-pressure-compressed C60 is also supported by the computer simulation of HRTEM images.


Sign in / Sign up

Export Citation Format

Share Document