Analysis and Optimization of the Tensioning Effect on a Wood-Cutting Circular Saw Blade Tensioned by Multispot Pressure

2019 ◽  
Vol 69 (1) ◽  
pp. 61-69
Author(s):  
Bo Li ◽  
Zhankuan Zhang

Abstract In recent years, a multispot pressure tensioning process appeared in the field of circular saw blade manufacturing. Due to the insufficient understanding about the formation and evolution of the tensioning effect of this process, this study aimed to analyze and optimize the tensioning effect on a circular saw blade tensioned by multispot pressure. It could provide a theoretical basis and key technical parameters for regulating and controlling the tensioning effect of this process. In this article, the natural frequency and the tensioning stress field of a circular saw blade tensioned by multispot pressure were calculated by ABAQUS software. The simulated tensioning stress field was in agreement with the experimental results, which confirmed the accuracy of the simulation model. The influence of process parameters on the natural frequency and tangential tensile stress in the edge of the circular saw blade was examined and compared based on the orthogonal method. Simulation results show that the parameters of the multispot pressure tensioning process have different degrees of influence on the tensioning effect of a circular saw blade. Considering the natural frequency and tangential tensile stress in the edge of a circular saw blade synthetically, optimal process parameters for multispot pressure tensioning were obtained.

2013 ◽  
Vol 444-445 ◽  
pp. 129-133 ◽  
Author(s):  
Ming Song Zhang ◽  
Pu Xian Zhu ◽  
Jian Jun Ke ◽  
Yi Kuan Zhu

The finite element modal analysis was used to study natural frequency of circular saw blade, when slotted. Finding the frequency of slotted is smaller than no slotted saw blade, showing that slot can have the effect of noise attenuation. The increasing of slot length, slot width, slot position, slot number can reduce the natural frequency of circular saw blade on the whole. The orthogonal text was used to study slot parameters. Finding that slot parameters’ influence of primary and secondary relations on saw blade first five natural frequency is slot position > slot number> slot length > slot width.


2021 ◽  
Vol 71 (4) ◽  
pp. 330-335
Author(s):  
Yuan An ◽  
Bo Li ◽  
Boyang Zhang

Abstract In this paper, a concise and fast 2D model of the roll tensioning process was built using the finite element method. Elastic thermal expansion is used to simulate rolling plastic deformation. A 3D model considering contact between roller and circular saw blade was also built. Through comparison of residual stress results obtained by the 2D model, 3D model, and X-ray stress test method, the correctness and feasibility of the 2D model were proven. While accounting for the diversity of circular saw blade structure, this paper provided an idea for rapidly predicting the residual stress field of a roll-tensioned circular saw blade.


2014 ◽  
Vol 670-671 ◽  
pp. 1106-1111 ◽  
Author(s):  
Ming Song Zhang ◽  
Pu Xian Zhu ◽  
Lian Bing Cheng

Applying the method of finite element to research the composite damping vibration reduction effect of circular saw blade. Based on the structure of composite damping circular saw blade, contrast a composite saw blade and ordinary saw blade, to design and compare their vibration characteristics. Through research the vibration characteristics on the three kinds of saw blades found that the each order natural frequency of composite damping saw blade and composite saw blade is smaller than the corresponding order natural frequency of ordinary saw blade, and the each order natural frequency of composite damping saw blade slightly smaller than the corresponding order natural frequency of composite saw blade; The maximum displacement deformation of composite damping saw blade and composite saw blade is smaller than the corresponding order of ordinary saw blade. Through study the damping characteristics found that the modal damping ratio of composite damping saw blade is greater than others; and research the dynamics characteristics found that composite damping blade's vibration attenuation faster than others, and it illustrate the good effect of damping saw blade.


2011 ◽  
Vol 228-229 ◽  
pp. 484-489
Author(s):  
Xiao Ling Wang ◽  
Zhong Jun Yin ◽  
Chao Zhang

Thinner saw blades cannot resist large lateral cutting forces due to their lower stiffness. In this paper we propose a composite reinforcement method to improve the mechanical properties of circular saw blades. We analyze and simulate the stress and strain fields of our proposed reinforced circular saws by Finite element method. Our analytical results contain not only influences of reinforcing parameters but also loading conditions on the lateral stiffness and the natural frequency of composite saw blades. Here the reinforcing parameters include: 1) the reinforcement location on circular saw blades, 2) the volume fraction of the reinforcements, 3) the number of the reinforcements; and loading conditions include: 1) the cutting force, 2) the rotational speed. Our composite reinforcement model and simulation results can contribute to a better design of circular saw blades.


2006 ◽  
Vol 532-533 ◽  
pp. 321-324 ◽  
Author(s):  
Shan Shan Hu ◽  
Cheng Yong Wang ◽  
Bang Dao Chen ◽  
Ying Ning Hu

Three kind of diamond circular saw blade with different structure parameters are designed in this paper. Adopted single-factor test, sawing force and vibration are measured by cutting several kinds of strength concrete in different cutting parameters. The analysis to characters of sawing force and vibration helps to find out optimum structure of diamond saw blade with different segment width, more rational sawing parameter and its adaptability to workpiece material.


2015 ◽  
Vol 66 (2) ◽  
pp. 123-128
Author(s):  
Ján Svoreň ◽  
Ľubomír Javorek ◽  
Adam Droba ◽  
Dušan Paulíny

2014 ◽  
Vol 614 ◽  
pp. 32-35 ◽  
Author(s):  
Ming Song Zhang ◽  
Yi Zhang ◽  
Jian Jun Ke ◽  
Xiao Wei Li ◽  
Lian Bing Cheng

The finite element method was used to study tangential roller method impact on the stability of circular saw blade. Using 30 ° cyclic symmetric model is analyzed. The results show that the tension of the saw blade is not the same, and tensioning effect is different, when the tangential roller pressure is not same. At the same time, after tangential roller, the face run out of saw blade is small, which show that the smoothness of tangential roller is better.


Sign in / Sign up

Export Citation Format

Share Document