The Influence of Tangential Roller Pressure on the Stability of Circular Saw Blade

2014 ◽  
Vol 614 ◽  
pp. 32-35 ◽  
Author(s):  
Ming Song Zhang ◽  
Yi Zhang ◽  
Jian Jun Ke ◽  
Xiao Wei Li ◽  
Lian Bing Cheng

The finite element method was used to study tangential roller method impact on the stability of circular saw blade. Using 30 ° cyclic symmetric model is analyzed. The results show that the tension of the saw blade is not the same, and tensioning effect is different, when the tangential roller pressure is not same. At the same time, after tangential roller, the face run out of saw blade is small, which show that the smoothness of tangential roller is better.

2011 ◽  
Vol 228-229 ◽  
pp. 477-483
Author(s):  
Xiao Ling Wang ◽  
Zhong Jun Yin ◽  
Chao Zhang

We investigate the natural frequency and the amplitude of circular saw blades during idling. We use four blades in the paper: 1) The traditional circular saw blades, 2) The circular saw blade with damping materials which is distributed in the core of blade, and the circular saw blade has a uniform thickness, 3) Similar to the above one but the circular saw blade has a non-uniform thickness, the damping region is thicker than other region of the circular blade, 4) the circular saw blade with damping material which is distributed around the core of blade by four small circular regions. We adopt the Finite Element Method in our numerical analysis. Our analytical results are very useful for a better design of circular saw blades.


2012 ◽  
Vol 226-228 ◽  
pp. 232-236
Author(s):  
Yuan Li

In order to improve thin circular saw blade’s cutting stability, it’s nonlinear dynamic incremental equilibrium equation was obtained according to nonlinear vibration theory and D’Alembert principle. It could be concluded from the above equation that cutting several radial slots on the circumference of the saw blade will cause significant change of dynamic characteristics of the saw blade. This thesis, employing the finite element method and matrix perturbation principle, calculated and studied respectively the effect of number, length and width of the radial slots on natural frequencies of the saw blade. Results show that number and length have distinct influence on natural frequencies but hardly does width have. So proper choice of number, length and width of the radial slots can improve effectively the dynamic characteristics of the saw blade.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2013 ◽  
Vol 444-445 ◽  
pp. 129-133 ◽  
Author(s):  
Ming Song Zhang ◽  
Pu Xian Zhu ◽  
Jian Jun Ke ◽  
Yi Kuan Zhu

The finite element modal analysis was used to study natural frequency of circular saw blade, when slotted. Finding the frequency of slotted is smaller than no slotted saw blade, showing that slot can have the effect of noise attenuation. The increasing of slot length, slot width, slot position, slot number can reduce the natural frequency of circular saw blade on the whole. The orthogonal text was used to study slot parameters. Finding that slot parameters’ influence of primary and secondary relations on saw blade first five natural frequency is slot position > slot number> slot length > slot width.


2011 ◽  
Vol 110-116 ◽  
pp. 1483-1490
Author(s):  
Hoon Hyung Jung ◽  
Chae Sil Kim

This paper describes a finite element structural analysis model and determines analysis methods appropriate for determining the stability of the mast of a crane. This analysis model allows various analysis approaches to be applied to the conditions affecting the construction of a large gantry crane in order to ensure the stability of the mast of the crane. The finite element method is used as a way to construct an analytical model that can help ensure the stability of the mast in two stages. The model is used in a two-stage analytical process that takes into account the conditions of the model. In this way, the model can be used to judge the stability of the mast. By allowing variation in the analysis approach used for the crane mast, the analysis model may be changed if the conditions of the one-girder gantry crane require. Designers may apply this method for the active analysis of the stability of a crane mast.


2011 ◽  
Vol 368-373 ◽  
pp. 234-240
Author(s):  
Shu Li Wang ◽  
Man Gen Mu ◽  
Ran Wang ◽  
Wen Bo Cui

This paper presents the results of a study on a joint slope deformation affecting the western slope of the GuangYang highway (YangQuan, China). Fieldwork identified the ongoing deformational process and assisted in defining its mechanisms, evolution and controlling factors. Here we discuss how to use limit equilibrium methods to calculate the behavior of slopes and to use the finite element analysis to evaluate the stability, displacements of slopes and soil-slope stabilization interaction. The finite element method with shear strength reduction (SSR) technique is explained in Phase2D. This method is effective for the prediction of the stability of slope. Based on numerical comparisons between the limit equilibrium methods and finite element method, it is suggested that the finite element method with SSR technique is a reliable and maybe unique approach to evaluate the slope stability. The paper also took into account effectiveness of the large rain and seismic load. The results of the numerical analysis are consistent with the observed slope surface evidence.


2014 ◽  
Vol 472 ◽  
pp. 671-676
Author(s):  
Bo Tao Liu ◽  
Yan Qi ◽  
Xiao Han ◽  
Shi Zeng Lv ◽  
Guo Feng Wang

Flange is the key part of the large vacuum container and its stiffness property affects the sealing effect and the stability of the container. Large flange welding process will have a greater impact on its structural strength. In view of the traditional way of forming large vacuum container flange has problems that processing and manufacturing are difficult, more material consumption, and poor stiffness, a new type of flange structure was support. The new design has hollow structure and the welding process of cover flange was simulated through the finite element method. After that, the stress and the deformation were analyzed and then the proper welding scheme was optimized.


2011 ◽  
Vol 189-193 ◽  
pp. 2153-2160
Author(s):  
Yu Wen Sun ◽  
Chuan Tai Zhang ◽  
Qiang Guo

Optimal fixture involves fixture layout and clamping force determination. It is critical to ensure the machining accuracy of workpiece. In this paper, the clamping process is analyzed with the consideration of cutting forces and frictions using the finite element method. Then the fixture layout and clamping force are optimized by minimizing the workpiece deformation via a Genetic Algorithm (GA). Subsequently, linear programming method is used to estimate the stability of workpiece. It is shown through an example that the proposed method is proved to be efficient. The optimization result is not only far superior to the experiential one, but also the total optimization time can be reduced significantly.


Author(s):  
Ilige S. Hage ◽  
Ramsey F. Hamade

The finite element method at the micro scale (mFEM) has been gaining in popularity to simulate biomechanical effects. In this paper, a 3D mFEM model is developed to simulate sawing of cortical bone under 2D orthogonal cutting conditions. The aim of the research was to develop a predictive model of the sawing forces and to report them as a function of depth of cut. To obtain the micro geometric input, a heterogeneous anisotropic model was created from several images taken via an optical microscope of the cortex of adult mid-diaphysal bovine femur. In order to identify the various regions representing the micro-architecture of cortical bone, such as osteons, Haversian canals, lamellae and lacunae, MATLAB was utilized for intelligent image processing based on pulsed coupled neural networks. After each micro-phase in the image was assigned the proper mechanical properties, these material-tagged micro-features were imported into the finite element method (FEM) solver. Results from the simulation were correlated to cutting force data that was determined experimentally. Experiments were conducted with individual stainless steel saw blade teeth that were removed from a typical surgical saw blade. The teeth were 0.64 mm thick, with a rake and clearance angle of −10 and 60 degrees, respectively. Representative of clinical conditions for power bone sawing, depths of cut per tooth between 2.5 micrometer and 10 micrometer were investigated. The simulated cutting forces from the mFEM model compared favorably to the experimental data.


2011 ◽  
Vol 335-336 ◽  
pp. 281-284 ◽  
Author(s):  
Chang Hao Wang ◽  
Jing Tian ◽  
Xiang Lu

According to the finite element method, this article has established the FML’s finite element model. By comparing to the test data and studying of the tensile behavior of FML, it has verified valid of the model. When the aluminum layer yields under the tensile load, the composite layer has the most tensile load. And the model has been developed to predict the stability influenced by the rib’s height.


Sign in / Sign up

Export Citation Format

Share Document