scholarly journals Design and analysis of a linear servo-actuated variable-span morphing wing

2020 ◽  
Vol 12 (4) ◽  
pp. 71-82
Author(s):  
Aynul HOSSAIN ◽  
Wei WANG ◽  
Hailong YUE

Morphing aircraft are multi-role aircraft that change their external shape substantially to adapt to a changing mission environment during flight. Current interest in morphing vehicles has been increased by advances in smart technologies such as materials, sensors and actuators. These advances have led to a series of breakthroughs in a wide variety of disciplines that, when fully realized for aircraft applications, have the potential to produce large improvements in aircraft safety, affordability, and environmental compatibility. Morphing wing designs include rotating, sliding and inflating based on shape change mechanisms. The current trend in technology development shows that there is lots to improve with regards to aircraft size, flying range and flight performance envelope. There should be a balance between shape change and the penalties in cost, complexity and weight. Final performance of the morphing aircraft depends heavily on how such balances in design, manufacture and morphing mechanism can be achieved. This paper was an attempt to design and perform a further analysis of an efficient variable span wing for aircraft and fixed wing UAVs.

2021 ◽  
Vol 13 (7) ◽  
pp. 4030
Author(s):  
Emily Birch ◽  
Ben Bridgens ◽  
Meng Zhang ◽  
Martyn Dade-Robertson

This paper introduces a new active material which responds to changes in environmental humidity. There has been growing interest in active materials which are able to respond to their environment, creating dynamic architectural systems without the need for energy input or complex systems of sensors and actuators. A subset of these materials are hygromorphs, which respond to changes in relative humidity (RH) and wetting through shape change. Here, we introduce a novel hygromorphic material in the context of architectural design, composed of multiple monolayers of microbial spores of Bacillus subtilis and latex sheets. Methods of fabrication and testing for this new material are described, showing that small actuators made from this material demonstrate rapid, reversible and repeatable deflection in response to changes in RH. It is demonstrated that the hygromorphic actuators are able to lift at least 150% of their own mass. Investigations are also extended to understanding this new biomaterial in terms of meaningful work.


2016 ◽  
Vol 53 (5) ◽  
pp. 1305-1316 ◽  
Author(s):  
Weihua Su ◽  
Sean Shan-Min Swei ◽  
Guoming G. Zhu

Author(s):  
Laxminarayana Saggere ◽  
Sridhar Kota

Abstract Compliant mechanisms are a class of mechanisms that achieve desired force and motion transmission tasks by undergoing elastic deformations as opposed to rigid-body displacements in the conventional rigid-link mechanisms. Most of the previously reported synthesis studies in compliant mechanisms related to either partially-compliant mechanisms or fully-compliant mechanisms with joint compliance. Methods developed for fully-compliant mechanisms with link compliance addressed the issue of topology generation for desired deflections at discrete points on the mechanism. This paper presents a new, first-principles based synthesis procedure for fully-compliant mechanisms with link compliance — that is, distributed-compliant mechanisms — for continuous shape change requirements in a particular segment of a mechanism. The general approach presented in this paper for the synthesis of distributed compliant mechanisms is shown to be well suited for application in the design of adaptive structures, an emerging class of high-performance structural systems. The current trend in the design of adaptive structures is to embed structures with force or strain inducing “smart” materials to serve as distributed actuators. Potential advantages of using the distributed compliance scheme over the distributed actuation scheme in the design of adaptive structures include a significant reduction in the number of required actuators and controls.


Author(s):  
Octavian M. Machidon

Today, technology is being integrated in all social environments, at home, school, or work, shaping a new world in which there is a closer interaction between human and machine than ever before. While every new technology brings along the expected “blessings,” there is also the thick end of the stick, namely the potential undesired effects it might cause. Explorative research in smart and enhancing technologies reveals that the current trend is for them to transcend to persuasive technologies, capable of shaping human behavior. In this context, this chapter aims at identifying the social and ethical implications of such technologies, being elaborated after reviewing literature from various research domains. It addresses the implications of today's smart and enhancing technologies on several levels: health repercussions, the social and behavioral changes they generate, and concerns of privacy and security. Also, the chapter emphasizes the need for scientists and researchers to engage not only with the technical considerations, but also with the societal implications mentioned above.


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. 293-297 ◽  
Author(s):  
Laura Y. Matloff ◽  
Eric Chang ◽  
Teresa J. Feo ◽  
Lindsie Jeffries ◽  
Amanda K. Stowers ◽  
...  

Variable feather overlap enables birds to morph their wings, unlike aircraft. They accomplish this feat by means of elastic compliance of connective tissue, which passively redistributes the overlapping flight feathers when the skeleton moves to morph the wing planform. Distinctive microstructures form “directional Velcro,” such that when adjacent feathers slide apart during extension, thousands of lobate cilia on the underlapping feathers lock probabilistically with hooked rami of overlapping feathers to prevent gaps. These structures unlock automatically during flexion. Using a feathered biohybrid aerial robot, we demonstrate how both passive mechanisms make morphing wings robust to turbulence. We found that the hooked microstructures fasten feathers across bird species except silent fliers, whose feathers also lack the associated Velcro-like noise. These findings could inspire innovative directional fasteners and morphing aircraft.


2020 ◽  
Vol 9 (4) ◽  
pp. 240 ◽  
Author(s):  
Sara Shirowzhan ◽  
Willie Tan ◽  
Samad M. E. Sepasgozar

Smart technologies are advancing, and smart cities can be made smarter by increasing the connectivity and interactions of humans, the environment, and smart devices. This paper discusses selective technologies that can potentially contribute to developing an intelligent environment and smarter cities. While the connectivity and efficiency of smart cities is important, the analysis of the impact of construction development and large projects in the city is crucial to decision and policy makers, before the project is approved. This raises the question of assessing the impact of a new infrastructure project on the community prior to its commencement—what type of technologies can potentially be used for creating a virtual representation of the city? How can a smart city be improved by utilizing these technologies? There are a wide range of technologies and applications available but understanding their function, interoperability, and compatibility with the community requires more discussion around system designs and architecture. These questions can be the basis of developing an agenda for further investigations. In particular, the need for advanced tools such as mobile scanners, Geospatial Artificial Intelligence, Unmanned Aerial Vehicles, Geospatial Augmented Reality apps, Light Detection, and Ranging in smart cities is discussed. In line with smart city technology development, this Special Issue includes eight accepted articles covering trending topics, which are briefly reviewed.


2019 ◽  
Vol 16 (6) ◽  
pp. 172988141988674 ◽  
Author(s):  
Yaqing Zhang ◽  
Wenjie Ge ◽  
Ziang Zhang ◽  
Xiaojuan Mo ◽  
Yonghong Zhang

The morphing wing with large deformation can benefit its flight performance a lot in different conditions. In this study, a variable camber morphing wing with compliant leading and trailing edges is designed by large-displacement compliant mechanisms. The compliant mechanisms are carried out by a hyperelastic structure topology optimization, based on a nonlinear meshless method. A laminated leading-edge skin is designed to fit the curvature changing phenomenon of the leading edge during deformation. A morphing wing demonstrator was manufactured to testify its deformation capability. Comparing to other variable camber morphing wings, the proposal can realize larger deflection of leading and trailing edges. The designed morphing wing shows great improvement in aerodynamic performance and enough strength to resist aerodynamic and structural loadings.


2021 ◽  
Vol 11 (22) ◽  
pp. 10663
Author(s):  
Tuba Majid ◽  
Bruce W. Jo

This paper aims to numerically validate the aerodynamic performance and benefits of variable camber rate morphing wings, by comparing them to conventional ones with plain flaps, when deflection angles vary, assessing their D reduction or L/D improvement. Many morphing-related research works mainly focus on the design of morphing mechanisms using smart materials, and innovative mechanism designs through materials and structure advancements. However, the foundational work that establishes the motivation of morphing technology development has been overlooked in most research works. All things considered, this paper starts with the verification of the numerical model used for the aerodynamic performance analysis and then conducts the aerodynamic performance analysis of (1) variable camber rate in morphing wings and (2) variable deflection angles in conventional wings. Finally, we find matching pairs for a direct comparison to validate the effectiveness of morphing wings. As a result, we validate that variable camber morphing wings, equivalent to conventional wings with varying flap deflection angles, are improved by at least 1.7% in their L/D ratio, and up to 18.7% in their angle of attack, with α = 8° at a 3% camber morphing rate. Overall, in the entire range of α, which conceptualizes aircrafts mission planning for operation, camber morphing wings are superior in D, L/D, and their improvement rate over conventional ones. By providing the improvement rates in L/D, this paper numerically evaluates and validates the efficiency of camber morphing aircraft, the most important aspect of aircraft operation, as well as the agility and manoeuvrability, compared to conventional wing aircraft.


Sign in / Sign up

Export Citation Format

Share Document