scholarly journals Statistical analysis of earthquake catalogue and magnitude of completeness for Northern and Southwestern Pakistan

2021 ◽  
pp. 27-38
Author(s):  
Shahzada Khurram
Author(s):  
D. Chebrov ◽  
A. Chebrova ◽  
I. Abubakirov ◽  
E. Matveenko ◽  
S. Mityushkina ◽  
...  

The seismicity review of Kamchatka and surrounding territories for 2014 is given. In Kamchatka earthquake catalogue minimum local magnitude of completeness is MLmin=3.5, and for earthquakes under the Okhotsk sea with h≥350 kmMLmin=3.6. The Kamchatka earthquake catalogue for 2014 with ML3.5, published in the Appendix to this annual, includes 1114 events. 86 earthquakes of the catalogue with ML=3.35–6.2 were felt in Kamchatka and surrounding areas with seismic intensity I ranged from 2 to 5 according the MSK-64 scale. For all events with ML5.0 occurred in the area of responsibility of the KB GS RAS in 2014, an attempt to calculate the seismic moment tensor (SMT) was made. There are 40 such events in the regional catalogue. For 36 earthquakes, the SMT and depth h of the equivalent point source were calculated successfully. The calcu-lations were performed for the SMT double-couple model using a nonlinear algorithm. In 2014, a typical location of the earthquake epicenters was observed in the Kamchatka zone. In 2014, the seismicity level in all selected zones and in the region as a whole corresponded to the background one according to the “SESL’09” scale. The number of recorded events with ML3.6 and strong earthquakes with ML5.1 is close to the average annual value. Anomalous and outstanding events were not recorded.


2019 ◽  
Vol 18 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Cecilia I. Nievas ◽  
Julian J. Bommer ◽  
Helen Crowley ◽  
Jan van Elk

Abstract Despite their much smaller individual contribution to the global counts of casualties and damage than their larger counterparts, earthquakes with moment magnitudes Mw in the range 4.0–5.5 may dominate seismic hazard and risk in areas of low overall seismicity, a statement that is particularly true for regions where anthropogenically-induced earthquakes are predominant. With the risk posed by these earthquakes causing increasing alarm in certain areas of the globe, it is of interest to determine what proportion of earthquakes in this magnitude range that occur sufficiently close to population or the built environment do actually result in damage and/or casualties. For this purpose, a global catalogue of potentially damaging events—that is, earthquakes deemed as potentially capable of causing damage or casualties based on a series of pre-defined criteria—has been generated and contrasted against a database of reportedly damaging small-to-medium earthquakes compiled in parallel to this work. This paper discusses the criteria and methodology followed to define such a set of potentially damaging events, from the issues inherent to earthquake catalogue compilation to the definition of criteria to establish how much potential exposure is sufficient to consider each earthquake a threat. The resulting statistics show that, on average, around 2% of all potentially-damaging shocks were actually reported as damaging, though the proportion varies significantly in time as a consequence of the impact of accessibility to data on damage and seismicity in general. Inspection of the years believed to be more complete suggests that a value of around 4–5% might be a more realistic figure.


2020 ◽  
Author(s):  
Onur Tan

Abstract. A new earthquake catalogue for Turkey and surrounding region (32°–47° N, 20°–52° E) is compiled for the period 1900–2017. The earthquake parameters are obtained from the Bulletin of International Seismological Centre that is fully updated in 2020. New conversion equations between moment magnitude and the other scales (md, ML, mb, Ms and M) are determined using in the General Orthogonal Regression method to build up a homogeneous catalogue, which is the essential data for seismic hazard studies. The 95 % confidence intervals are estimated using the bootstrap method with 1000 samples. The equivalent moment magnitudes (Mw*) for the entire catalogue are calculated using the magnitude relations to homogenise the catalogue. The magnitude of completeness is 2.9 Mw* and 3.0–3.2 Mw* for Turkey and Greece generally. The final dataset is not declustered or truncated using a threshold magnitude because of motivation for generating a widely usable catalogue. It contains not only Mw*, but also the average and median of the observed magnitudes for each event. Contrary to the limited earthquake parameters in the previous catalogues, the 45 parameters of approximately 700 k events occurred in a wide area from the Balkans to the Caucasus are presented.


2021 ◽  
Vol 21 (7) ◽  
pp. 2059-2073
Author(s):  
Onur Tan

Abstract. A new homogenized earthquake catalogue for Turkey is compiled for the period 1900–2018. The earthquake parameters are obtained from the Bulletin of International Seismological Centre that was fully updated in 2020. New conversion equations between moment magnitude and the other scales (md, ML, mb, Ms, and M) are determined using the general orthogonal regression method to build up a homogeneous catalogue, which is the essential database for seismic hazard studies. The 95 % confidence intervals are estimated using the bootstrap method with 1000 samples. The equivalent moment magnitudes (Mw*) for the entire catalogue are calculated using the magnitude relations to homogenize the catalogue. The magnitude of completeness is 2.7 Mw*. The final catalogue is not declustered or truncated using a threshold magnitude in order to be a widely usable catalogue. It contains not only Mw* but also the average and median of the observed magnitudes for each event. Contrary to the limited earthquake parameters in the previous catalogues for Turkey, the 45 parameters of ∼378 000 events are presented in this study.


2021 ◽  
Author(s):  
Annemarie Muntendam-Bos ◽  
Nilgün Güdük

<p>We present a data-driven analysis to derive whether statistically significant spatial and/or temporal Gutenberg-Richter b-value variations exist within the induced earthquake catalogue of the Groningen gas field. We utilize the method developed by Kamer and Hiemer (2015; J. Geophys. Res. Solid Earth, 120, doi:10.1002/2014JB011510 ) which is based on optimal partitioning using Voronoi tessellation, penalized likelihood, and wisdom of the crowd philosophy. Our implementation derives both the magnitude of completeness and the b-values simultaneously. The magnitude of completeness is computed with the maximum curvature method with a correction applied to avoid bias due to catalogue incompleteness. Finally, following Marzocchi et al. (2020; Geophys. J. Int. 220, doi: 10.1093/gji/ggz541) the b-values computed are corrected for bin size and small sample sizes.</p><p>In a first step we have limited the analysis to spatial variations in the b-values. A significant advantage of the approach taken is that it is feasible to also derive b-values in regions of very low data density. We will show that a statistically significant variation in b-values is obtained. Very low b-values (b<0.8) are observed in the central-northern part of the gas field. However, in the west near the production cluster Eemskanaal (EKL) and in the east near the city of Delfzijl significantly higher b-values (b>1.1) are observed. A Kolmogorov-Smirnov test of frequency-magnitude distributions for the two areas obtains a p-value of 1.5 10-13 and 2.3 10-12 for the EKL region and Delfzijl regions, respectively, rendering the difference more than statistically significant at the 99% confidence level.</p><p>In a second step we extended the spatial analysis to a spatial-temporal analysis. The results of the analysis show that the Groningen earthquake database is too small to derive meaningful spatial results for the full Groningen gas field based on multiple random temporal nodes.  We divided the dataset in two almost equal datasets: both containing roughly 50% of the data and of comparable spatial resolution. Spatial analysis of these two subsets of the catalogue shows a significant decrease of the b-values in the central and southern regions. Particularly in the western EKL region the b-value decreases from 1.2 to 0.92. The decrease is close to significant at the 90% confidence level. The northern region exhibits comparable low b-values in both periods. As the data in the first decade is primarily concentrated in the northern region, we have attempted to assess the spatial b-value here in the period prior to 2005. We find the high b-value area is significantly smaller and the minimum value is higher (b = 0.96 pre-2005 versus b = 0.88 post-2012). The difference is significant only at the interquartile level, but the model resolution is low.</p><p>Based on our results, we could conclude a spatial and temporal variation in b-value is observed. However, despite our efforts to limit bias in the derivation, variations could still result from the presence of a truncation. Hence, we will extend the current analysis by a comparable analysis assuming a constant b-value and estimating the corner magnitude of a taper truncation.</p>


2015 ◽  
Vol 58 (1) ◽  
Author(s):  
Natalya N. Mikhailova ◽  
Aidyn S. Mukambayev ◽  
Irina L. Aristova ◽  
Galina Kulikova ◽  
Shahid Ullah ◽  
...  

<p>In this work, we present the seismic catalogue compiled for Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan and Turkmenistan) in the framework of the Earthquake Model Central Asia (EMCA) project. The catalogue from 2000 B.C. to 2009 A.D. is composed by 33,034 earthquakes in the MLH magnitude (magnitude by surface waves on horizontal components widely used in practice of the former USSR countries) range from 1.5 to 8.3. The catalogue includes both macroseimic and instrumental constrained data, with about 32,793 earthquake after 1900 A.D. The main sources and procedure used to compile the catalogues are discussed, and the comparison with the ISC-GEM catalogue presented. Magnitude of completeness analysis shows that the catalogue is complete down to magnitude 4 from 1959 and to magnitude 7 from 1873, whereas the obtained regional b value is 0.805.</p>


2014 ◽  
Vol 08 (05) ◽  
pp. 1471001 ◽  
Author(s):  
Santi Pailoplee

In this study, I investigated qualitatively the earthquake catalogue of the Thai Meteorological Department (TMD), Thailand, with respect to the seismicity patterns of Thailand. The readymade relationships between the different magnitude scales were derived to allow their convenient interconversion. Earthquake declustering was performed in order to screen the main shocks from the foreshocks and aftershocks, reducing the 1998–2009 records from ~48,900 to 2,620 main events. Man-made changes in the seismicity rate were carefully checked for, but only some minor changes were found and these were not related to any network improvements. In order to assess the limit of the earthquake detection in the catalogue the criterion of the magnitude of completeness (Mc) was employed, revealing a high efficiency of earthquake detection at a low Mc (3.0–3.5 Mw), especially for the inland active fault zone that dominates in Southeast Asia. Thus, the TMD's catalogue is one of the alternative catalogues for seismicity investigation of inland earthquakes. Meanwhile for the area surrounding the Sumatra Island and Northern Myanmar, the TMD's network is sufficient only for earthquakes with a Mw > 5.4–6.0 Mw. Thus, some additional seismic recording stations are needed in the Southern and Northern parts of Thailand.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Sign in / Sign up

Export Citation Format

Share Document