A Numerical Method for the Solution of Three-Dimensional Neutron-Transport Problems

1970 ◽  
Vol 41 (1) ◽  
pp. 14-21 ◽  
Author(s):  
M. R. Wagner ◽  
D. A. Sargis ◽  
S. C. Cohen
Author(s):  
Rube´n Panta Pazos

In this work the hybrid methods approach is introduced in order to solve some problems in Transport Theory for different geometries. The transport equation is written as: ∂ψ∂t(x,v,t)+v·∇ψ(x,v,t)+h(x,μ)ψ(x,v,t)==∫Vk(x,v,v′)ψ(x,v′,t)dv′+q(x,v,t),inΩTψ(x,v,0)=φ0(x,v),in∂Ω×Vψ(x,v,t)=φ(x,v,t),in∂Ω×V×R(1) where x represents the spatial variable in a domain D, v an element of a compact set V, ψ is the angular flux, h(x, v) the collision frequency, k(x, v, v’) the scattering kernel function and q(x, v) the source function. If ψ does not depend on the time, it is said that the problem (1) is a steady transport problem. Once the problem is defined, including the boundary conditions, it is disposed a set of chained methods in order to solve the problem. Between the different alternatives, an optimal scheme for the resolution is chosen. Two illustrations are given. For two-dimensional geometries it is employed a hybrid analytical and numerical method, for transport problems: conformal mapping first, then the solution in a proper geometry (rectangular for example). Each of the following two techniques is then applied, Krylov subspaces method or spectral-LTSN method. For three-dimensional problems also it is used a hybrid analytical and numerical method, for problems with more complex geometries: a homotopy between the original boundaries (piecewise surfaces) and another (a parallelepiped for example). Then each of two techniques are applied, Krylov subspaces method or nodal-LTSN method. In this case, the design of new geometries for reactors is a straightforward task. En each case, the domain consist of three regions, one of the source, other is the void region and the third one is a shield domain. The results are obtained both with an algebraic computer system and with a language of high level. An important extension is the study and treatment of transport problems for domains with irregular geometries, between them Lipschitzian domains. One remarkable fact of this work is the combination of different modeling and resolution techniques to solve some transport problems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Souma Jinno ◽  
Shuji Kitora ◽  
Hiroshi Toki ◽  
Masayuki Abe

AbstractWe formulate a numerical method on the transmission and radiation theory of three-dimensional conductors starting from the Maxwell equations in the time domain. We include the delay effect in the integral equations for the scalar and vector potentials rigorously, which is vital to obtain numerically stable solutions for transmission and radiation phenomena in conductors. We provide a formalism to connect the conductors to any passive lumped-parameter circuits. We show one example of numerical calculations, demonstrating that the new formalism provides stable solutions to the transmission and radiation phenomena.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Zheng Yuan ◽  
Jin Jiang ◽  
Jun Zang ◽  
Qihu Sheng ◽  
Ke Sun ◽  
...  

In the array design of the vertical axis wind turbines (VAWT), the wake effect of the upstream VAWT on the downstream VAWT needs to be considered. In order to simulate the velocity distribution of a VAWT wake rapidly, a new two-dimensional numerical method is proposed, which can make the array design easier and faster. In this new approach, the finite vortex method and vortex particle method are combined to simulate the generation and evolution of the vortex, respectively, the fast multipole method (FMM) is used to accelerate the calculation. Based on a characteristic of the VAWT wake, that is, the velocity distribution can be fitted into a power-law function, a new correction model is introduced to correct the three-dimensional effect of the VAWT wake. Finally, the simulation results can be approximated to the published experimental results in the first-order. As a new numerical method to simulate the complex VAWT wake, this paper proves the feasibility of the method and makes a preliminary validation. This method is not used to simulate the complex three-dimensional turbulent evolution but to simulate the velocity distribution quickly and relatively accurately, which meets the requirement for rapid simulation in the preliminary array design.


2005 ◽  
Vol 74 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Reese E. Jones

A Greenwood and Williamson based model for interfacial friction is presented that incorporates the presliding transition phenomenon that can significantly affect small devices. This work builds on previous similar models by developing: an analytical estimate of the transition length in terms of material and surface parameters, a general recursion formula for the case of slip in one direction with multiple reversals and constant normal loading, and a numerical method for the general three-dimensional loading case. In addition, the proposed model is developed within a plasticity-like framework and is shown to have qualitative similarities with published experimental observations. A number of model problems illustrate the response of the proposed model to various loading conditions.


Sign in / Sign up

Export Citation Format

Share Document