Global communications and expert systems in thermodynamics: Connecting property measurement and chemical process design

2005 ◽  
Vol 77 (8) ◽  
pp. 1349-1367 ◽  
Author(s):  
Michael Frenkel

Unprecedented growth in the number of custom-designed software tools for engineering applications has created an interoperability problem between the formats and structures of thermodynamic data files and required input/output structures designed for application software products. Various approaches for standardization of thermophysical and thermochemical property data storage and exchange are analyzed in this paper. Emphasis is made on the development of the XML-based IUPAC standard for thermodynamic data communications: ThermoML. A new process for global data submission and dissemination in the field of thermodynamics based on ThermoML and Guided Data Capture software is described. Establishment of the global submission and dissemination process for thermodynamic data lays the foundation for implementation of the new concept of dynamic data evaluation formulated at NIST/TRC, which requires the development of large electronic databases capable of storing essentially all “raw” experimental data known to date with detailed descriptions of relevant metadata and uncertainties. The combination of these databases with expert software designed primarily to generate recommended data based on available “raw” experimental data and their uncertainties leads to the possibility of producing data compilations automatically “to order”, forming a dynamic data infrastructure. Implementation of the dynamic data evaluation concept for pure compounds in the new NIST/TRC ThermoData Engine software is discussed.

2006 ◽  
Vol 78 (3) ◽  
pp. 541-612 ◽  
Author(s):  
Michael Frenkel ◽  
Robert D. Chiroco ◽  
Vladimir Diky ◽  
Qian Dong ◽  
Kenneth N. Marsh ◽  
...  

ThermoML is an Extensible Markup Language (XML)-based new IUPAC standard for storage and exchange of experimental, predicted, and critically evaluated thermophysical and thermochemical property data. The basic principles, scope, and description of all structural elements of ThermoML are discussed. ThermoML covers essentially all thermodynamic and transport property data (more than 120 properties) for pure compounds, multicomponent mixtures, and chemical reactions (including change-of-state and equilibrium reactions). Representations of all quantities related to the expression of uncertainty in ThermoML conform to the Guide to the Expression of Uncertainty in Measurement (GUM). The ThermoMLEquation schema for representation of fitted equations with ThermoML is also described and provided as supporting information together with specific formulations for several equations commonly used in the representation of thermodynamic and thermophysical properties. The role of ThermoML in global data communication processes is discussed. The text of a variety of data files (use cases) illustrating the ThermoML format for pure compounds, mixtures, and chemical reactions, as well as the complete ThermoML schema text, are provided as supporting information.


2013 ◽  
Vol 53 (12) ◽  
pp. 3418-3430 ◽  
Author(s):  
Vladimir Diky ◽  
Robert D. Chirico ◽  
Chris D. Muzny ◽  
Andrei F. Kazakov ◽  
Kenneth Kroenlein ◽  
...  

2011 ◽  
Vol 8 (2) ◽  
pp. 85-94
Author(s):  
Hendrik Mehlhorn ◽  
Falk Schreiber

Summary DBE2 is an information system for the management of biological experiment data from different data domains in a unified and simple way. It provides persistent data storage, worldwide accessibility of the data and the opportunity to load, save, modify, and annotate the data. It is seamlessly integrated in the VANTED system as an add-on, thereby extending the VANTED platform towards data management. DBE2 also utilizes controlled vocabulary from the Ontology Lookup Service to allow the management of terms such as substance names, species names, and measurement units, aiming at an eased data integration.


Author(s):  
David G. Becht ◽  
Larry A. Hawkins ◽  
Joseph K. Scharrer ◽  
Brian T. Murphy

Abstract SSME HPFTP hot-fire dynamic data evaluation and rotordynamic analysis both confirm that two of the most significant turbopump attributes in determining susceptibility to subsynchronous vibration are impeller interstage seal configuration and rotor sideload resulting from turbine turnaround duct configuration and hot gas manifold. Recent hot-fire testing has provided promising indications that the incorporation of roughened “damping” seals at the impeller interstages may further increase the stability margin of this machine. A summary of the analysis which led to the conclusion that roughened seals would enhance the stability margin is presented herein, along with a correlation of the analysis with recent test data.


2005 ◽  
Vol 45 (4) ◽  
pp. 816-838 ◽  
Author(s):  
Michael Frenkel ◽  
Robert D. Chirico ◽  
Vladimir Diky ◽  
Xinjian Yan ◽  
Qian Dong ◽  
...  

2019 ◽  
Vol 161 (A2) ◽  

In this paper, an attempt has been made to predict the performance of a planing catamaran using a mathematical model. Catamarans subjected to a common hydrodynamic lift, have an extra lift between the two asymmetric half bodies. In order to develop a mathematical model for performance prediction of planing catamarans, existing formulas for hydrodynamic lift calculation must be modified. Existing empirical and semi-empirical equations in the literature have been implemented and compared against available experimental data. Evaluation of lift in comparison with experimental data has been documented. Parameters influencing the interaction between demi-hulls and separation effects have been analyzed. The mathematical model for planing catamarans has been developed based on Savitsky’s method and results have been compared against experimental data. Finally, the effects of variation in hull geometry such as deadrise angle and distance between two half bodies on equilibrium trim angle, resistance and wetted surface have been examined.


2017 ◽  
Vol 313 ◽  
pp. 145-160 ◽  
Author(s):  
Hannes Mann ◽  
Christoph Roloff ◽  
Thomas Hagemeier ◽  
Dominique Thévenin ◽  
Jürgen Tomas

Author(s):  
Tao Shang ◽  
Feng Zhang ◽  
Xingyue Chen ◽  
Jianwei Liu ◽  
Xinxi Lu

Sign in / Sign up

Export Citation Format

Share Document