scholarly journals Suppression of Subsynchronous Vibration in the SSME HPFTP

Author(s):  
David G. Becht ◽  
Larry A. Hawkins ◽  
Joseph K. Scharrer ◽  
Brian T. Murphy

Abstract SSME HPFTP hot-fire dynamic data evaluation and rotordynamic analysis both confirm that two of the most significant turbopump attributes in determining susceptibility to subsynchronous vibration are impeller interstage seal configuration and rotor sideload resulting from turbine turnaround duct configuration and hot gas manifold. Recent hot-fire testing has provided promising indications that the incorporation of roughened “damping” seals at the impeller interstages may further increase the stability margin of this machine. A summary of the analysis which led to the conclusion that roughened seals would enhance the stability margin is presented herein, along with a correlation of the analysis with recent test data.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


Author(s):  
Baina He ◽  
Yadi Xie ◽  
Jingru Zhang ◽  
Nirmal-Kumar C. Nair ◽  
Xingmin He ◽  
...  

Abstract In the transmission line, the series compensation device is often used to improve the transmission capacity. However, when the fixed series capacitor (FSC) is used in high compensation series compensation device, the stability margin cannot meet the requirements. Therefore, thyristor controlled series compensator (TCSC) is often installed in transmission lines to improve the transmission capacity of the line and the stability of the system. For cost considerations, the hybrid compensation mode of FSC and TCSC is often adopted. However, when a single-phase grounding fault occurs in a transmission line with increased series compensation degree, the unreasonable distribution of FSC and TCSC will lead to the excessive amplitude of secondary arc current, which is not conducive to rapid arc extinguishing. To solve this problem, this paper is based on 1000 kV Changzhi-Nanyang-Jingmen UHV series compensation transmission system, using PSCAD simulation program to established UHV series compensation simulation model, The variation law of secondary arc current and recovery voltage during operation in fine tuning mode after adding TCSC to UHV transmission line is analyzed, and the effect of increasing series compensation degree on secondary arc current and recovery voltage characteristics is studied. And analyze the secondary arc current and recovery voltage when using different FSC and TCSC series compensation degree schemes, and get the most reasonable series compensation configuration scheme. The results show that TCSC compensation is more beneficial to arc extinguishing under the same series compensation. Compared with several series compensation schemes, it is found that with the increase of the proportion of TCSC, the amplitude of secondary arc current and recovery voltage vary greatly. Considering various factors, the scheme that is more conducive to accelerating arc extinguishing is chosen.


2010 ◽  
Vol 163-167 ◽  
pp. 3297-3300 ◽  
Author(s):  
Jia Wei Shi ◽  
Hong Zhu ◽  
Zhi Shen Wu ◽  
Gang Wu

Coupon tests were conducted to investigate the mechanical characteristics of basalt FRP (BFRP) sheet, basalt-carbon hybrid FRP sheets and the corresponding epoxy rein under the effect of freeze-thaw cycling. FRP sheets and epoxy rein coupons were subjected to up to 200 and 250 freeze-thaw cycles respectively. Test parameters included the number of freeze-thaw cycles and the types of FRP composites. Test results show that (1) BFRP sheet perform better than CFRP or GFRP sheets under high freeze-thaw cycles; (2) exposed hybrid FRP sheets not only show very little loss in mechanical properties, but also contribute to the stability of test data; (3) mechanical properties of rein epoxy decrease significantly with increasing freeze-thaw cycles.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2000 ◽  
Vol 123 (3) ◽  
pp. 651-654 ◽  
Author(s):  
K. Raghunandana ◽  
B. C. Majumdar, and ◽  
R. Maiti

The purpose of this paper is to study the effect of non-Newtonian lubricant on the stability of oil film journal bearings mounted on flexible support using linear perturbation technique. The model of non-Newtonian lubricant developed by Dien and Elrod is taken into consideration. The dynamic co-coefficients are calculated for different values of power law index and length to diameter ratio. These are then used to find stability margin for different support parameters to study the effect of the non-Newtonian lubricant.


2005 ◽  
Vol 45 (4) ◽  
pp. 816-838 ◽  
Author(s):  
Michael Frenkel ◽  
Robert D. Chirico ◽  
Vladimir Diky ◽  
Xinjian Yan ◽  
Qian Dong ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 365-373
Author(s):  
Quang Thong Do

The proportional guidance method-based missile homing systems (MHS) have been widely used the real-world environments. In these systems, in order to destroy the targets at different altitudes, a normal acceleration stabilization system (NASS) is often utilized. Therefore, the MHS are complex and the synthesis of these systems are a complex task. However, it is necessary to synthesize NASS during the synthesis of the MHS. To simplify the synthesis process, a linear model of the NASS is used. In addition, we make use of the available commands in Control System Toolbox in MATLAB. Because the Toolbox has the commands to describe the transfer function, determine the stability gain margin, and the values of the transient respond of the linear automatic systems. Thus, this article presents two methods for synthesizing the missile homing systems, including (i) a method for synthesizing the MHS while ensuring the permissible stability gain margin of the NASS, and (ii) a method for synthesizing the MHS while ensuring the permissible stability margin of the NASS by overshoot. These techniques are very easy to implement using MATLAB commands. The synthesis of the proposed MHS is carried out by the parametric optimization method. To validate the performance of the proposed techniques, we compare them withthe MHS synthesized by ensuring the stability margin of the NASS bythe oscillation index. The results show that, two our proposed methods and the existing method provide the same results in terms of high-precision. Nevertheless, the proposed methods are simple and faster than the conventional method. The article also investigates the effect of gravity, longitudinal acceleration of the rocket, andblinding of the homing head on the accuracy of the synthesized MHS. The results illustrate that they have a little effect on its accuracy.


2019 ◽  
Vol 28 (04) ◽  
pp. 1950068 ◽  
Author(s):  
Tian-Bo Deng

This paper proposes a novel method for the design of a recursive second-order (biquadratic) all-pass phase compensator with controllable stability margin. The design idea stems from the generalized stability triangle (GST) derived by the author for the second-order biquadratic digital filter. Based on the GST, a parameter-transformation method is proposed on the transformations of the denominator coefficients of the transfer function of the biquadratic phase compensator. The transformations convert the original denominator coefficients to other new parameters, and any values of those new parameters can guarantee that the GST condition is always satisfied. Optimizing the new parameters yields a biquadratic phase compensator that definitely meets a prespecified stability margin. That is, a biquadratic all-pass phase compensator can be designed to have an arbitrarily specified stability margin. This in turn avoids the occurrence that a recursive phase compensator may become unstable in the practical applications. Thus, the resulting biquadratic phase compensator has robust stability, which is extremely important during the practical filtering operations. A design example is given to show the stability margin guarantee as well as the approximation accuracy.


Sign in / Sign up

Export Citation Format

Share Document