The structure of observable algebra in $\bm{G}$-spin models determined by a normal subgroup


2014 ◽  
Vol 55 (9) ◽  
pp. 091703 ◽  
Author(s):  
Qiaoling Xin ◽  
Lining Jiang


Filomat ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 485-500
Author(s):  
Xiaomin Wei ◽  
Lining Jiang ◽  
Qiaoling Xin

Let H be a finite dimensional Hopf C*-algebra, H1 a Hopf*-subalgebra of H. This paper focuses on the observable algebra AH1 determined by H1 in nonequilibrium Hopf spin models, in which there is a copy of H1 on each lattice site, and a copy of ? on each link, where ? denotes the dual of H. Furthermore, using the iterated twisted tensor product of finite +*-algebras, one can prove that the observable algebraAH1 is *-isomorphic to the C*-inductive limit ... o H1 o ? o H1 o ? o H1 o ... .



Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1547
Author(s):  
Cao Tianqing ◽  
Xin Qiaoling ◽  
Wei Xiaomin ◽  
Jiang Lining

Let H be a finite dimensional C∗-Hopf algebra and A the observable algebra of Hopf spin models. For some coaction of the Drinfeld double D(H) on A, the crossed product A⋊D(H)^ can define the field algebra F of Hopf spin models. In the paper, we study C∗-basic construction for the inclusion A⊆F on Hopf spin models. To achieve this, we define the action α:D(H)×F→F, and then construct the resulting crossed product F⋊D(H), which is isomorphic A⊗End(D(H)^). Furthermore, we prove that the C∗-basic construction for A⊆F is consistent to F⋊D(H), which yields that the C∗-basic constructions for the inclusion A⊆F is independent of the choice of the coaction of D(H) on A.



2020 ◽  
Vol 23 (1) ◽  
pp. 97-101
Author(s):  
Mikhail Petrichenko ◽  
Dmitry W. Serow

Normal subgroup module f (module over the ring F = [ f ] 1; 2-diffeomorphisms) coincides with the kernel Ker Lf derivations along the field. The core consists of the trivial homomorphism (integrals of the system v = x = f (t; x )) and bundles with zero switch group Lf , obtained from the condition ᐁ( ω × f ) = 0. There is the analog of the Liouville for trivial immersion. In this case, the core group Lf derivations along the field replenished elements V ( z ), such that ᐁz = ω × f. Hence, the core group Lf updated elements helicoid (spiral) bundles, in particular, such that f = ᐁU. System as an example Crocco shown that the canonical system does not permit the trivial embedding: the canonical system of equations are the closure of the class of systems that permit a submersion.



2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.



2002 ◽  
Vol 66 (18) ◽  
Author(s):  
H. Q. Lin ◽  
J. L. Shen ◽  
H. Y. Shik


2019 ◽  
Vol 31 (3) ◽  
pp. 769-777
Author(s):  
Jairo Z. Gonçalves

Abstract Let k be a field, let {\mathfrak{A}_{1}} be the k-algebra {k[x_{1}^{\pm 1},\dots,x_{s}^{\pm 1}]} of Laurent polynomials in {x_{1},\dots,x_{s}} , and let {\mathfrak{A}_{2}} be the k-algebra {k[x,y]} of polynomials in the commutative indeterminates x and y. Let {\sigma_{1}} be the monomial k-automorphism of {\mathfrak{A}_{1}} given by {A=(a_{i,j})\in GL_{s}(\mathbb{Z})} and {\sigma_{1}(x_{i})=\prod_{j=1}^{s}x_{j}^{a_{i,j}}} , {1\leq i\leq s} , and let {\sigma_{2}\in{\mathrm{Aut}}_{k}(k[x,y])} . Let {D_{i}} , {1\leq i\leq 2} , be the ring of fractions of the skew polynomial ring {\mathfrak{A}_{i}[X;\sigma_{i}]} , and let {D_{i}^{\bullet}} be its multiplicative group. Under a mild restriction for {D_{1}} , and in general for {D_{2}} , we show that {D_{i}^{\bullet}} , {1\leq i\leq 2} , contains a free subgroup. If {i=1} and {s=2} , we show that a noncentral normal subgroup N of {D_{1}^{\bullet}} contains a free subgroup.



Nanophotonics ◽  
2020 ◽  
Vol 9 (13) ◽  
pp. 4193-4198 ◽  
Author(s):  
Midya Parto ◽  
William E. Hayenga ◽  
Alireza Marandi ◽  
Demetrios N. Christodoulides ◽  
Mercedeh Khajavikhan

AbstractFinding the solution to a large category of optimization problems, known as the NP-hard class, requires an exponentially increasing solution time using conventional computers. Lately, there has been intense efforts to develop alternative computational methods capable of addressing such tasks. In this regard, spin Hamiltonians, which originally arose in describing exchange interactions in magnetic materials, have recently been pursued as a powerful computational tool. Along these lines, it has been shown that solving NP-hard problems can be effectively mapped into finding the ground state of certain types of classical spin models. Here, we show that arrays of metallic nanolasers provide an ultra-compact, on-chip platform capable of implementing spin models, including the classical Ising and XY Hamiltonians. Various regimes of behavior including ferromagnetic, antiferromagnetic, as well as geometric frustration are observed in these structures. Our work paves the way towards nanoscale spin-emulators that enable efficient modeling of large-scale complex networks.



Sign in / Sign up

Export Citation Format

Share Document