scholarly journals Non-Lambertian photometric stereo vision algorithm based on a multi-scale convolution deep learning architecture

2020 ◽  
Vol 50 (3) ◽  
pp. 323-334
Author(s):  
MingJun REN ◽  
Lin FU ◽  
GaoBo XIAO ◽  
MingHan CHEN ◽  
Xi WANG
2021 ◽  
Vol 13 (12) ◽  
pp. 2425
Author(s):  
Yiheng Cai ◽  
Dan Liu ◽  
Jin Xie ◽  
Jingxian Yang ◽  
Xiangbin Cui ◽  
...  

Analyzing the surface and bedrock locations in radar imagery enables the computation of ice sheet thickness, which is important for the study of ice sheets, their volume and how they may contribute to global climate change. However, the traditional handcrafted methods cannot quickly provide quantitative, objective and reliable extraction of information from radargrams. Most traditional handcrafted methods, designed to detect ice-surface and ice-bed layers from ice sheet radargrams, require complex human involvement and are difficult to apply to large datasets, while deep learning methods can obtain better results in a generalized way. In this study, an end-to-end multi-scale attention network (MsANet) is proposed to realize the estimation and reconstruction of layers in sequences of ice sheet radar tomographic images. First, we use an improved 3D convolutional network, C3D-M, whose first full connection layer is replaced by a convolution unit to better maintain the spatial relativity of ice layer features, as the backbone. Then, an adjustable multi-scale module uses different scale filters to learn scale information to enhance the feature extraction capabilities of the network. Finally, an attention module extended to 3D space removes a redundant bottleneck unit to better fuse and refine ice layer features. Radar sequential images collected by the Center of Remote Sensing of Ice Sheets in 2014 are used as training and testing data. Compared with state-of-the-art deep learning methods, the MsANet shows a 10% reduction (2.14 pixels) on the measurement of average mean absolute column-wise error for detecting the ice-surface and ice-bottom layers, runs faster and uses approximately 12 million fewer parameters.


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


2020 ◽  
Vol 12 ◽  
pp. 175883592097141
Author(s):  
Fan Zhang ◽  
Lian-Zhen Zhong ◽  
Xun Zhao ◽  
Di Dong ◽  
Ji-Jin Yao ◽  
...  

Background: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). Methods: We recruited 220 NPC patients and divided them into training ( n = 132), internal test ( n = 44), and external test ( n = 44) cohorts. The primary endpoint was failure-free survival (FFS). Radiomic features were extracted from pretreatment MRI and selected and integrated into a radiomic signature. The histopathological signature was extracted from whole-slide images of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures and independent clinical factors, a multi-scale nomogram was constructed. We also tested the correlation between the key imaging features and genetic alternations in an independent cohort of 16 patients (biological test cohort). Results: Both radiomic and histopathologic signatures presented significant associations with treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale nomogram showed a consistent significant improvement for predicting treatment failure compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found that two texture features were related to the genetic alternations of chromatin remodeling pathways in another independent cohort. Conclusion: The multi-scale imaging features showed a complementary value in prognostic prediction and may improve individualized treatment in NPC.


Author(s):  
Mario Alberto Ibarra-Manzano ◽  
Michel Devy ◽  
Jean-Louis Boizard ◽  
Pierre Lacroix ◽  
Jean-Yves Fourniols

2018 ◽  
Vol 72 (11) ◽  
pp. 1292-1300
Author(s):  
Jason Sang Hun Lee ◽  
Inkyu Park ◽  
Sangnam Park

2021 ◽  
Author(s):  
Mousumi Akter ◽  
Nariman Niknejad ◽  
Yin Bao ◽  
Rafael Bidese Puhl ◽  
Kitt Payn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document