Flexural Strength Distribution of 3D SiC/SiC Composite

2006 ◽  
Vol 15 (6) ◽  
pp. 712-716 ◽  
Author(s):  
S. Wu ◽  
L. Cheng ◽  
N. Dong ◽  
L. Zhang ◽  
Y. Xu
1996 ◽  
Vol 118 (4) ◽  
pp. 863-871 ◽  
Author(s):  
J. A. Salem ◽  
N. N. Nemeth ◽  
L. M. Powers ◽  
S. R. Choi

The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three-parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.


Author(s):  
Jonathan A. Salem ◽  
Noel N. Nemeth ◽  
Lynn M. Powers ◽  
Sung R. Choi

The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.


2011 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Arhamsyah Arhamsyah

Research on the utilization of bamboo as a raw material layer interior products have been made. This research aims to determine the nature of plybamboo in terms of technical aspects / processes of manufacture, physical and mechanical, the influence of weight variation labur adhesive, adhesive types and kinds of bamboo products plybamboo.This type of bamboo used is sweet bamboo (Gigantochloa atter Kurz) and bamboo lear (Gigantochloa apus Kurz).The adhesive used was adhesive Polyvinil Acetat (PVAc) and Chloroprene with adhesive labur weight each - each 150 gr/m2, 200 gr/m2 and 250 gr/m2. The parameters tested were water content, density, flexural strength of dry and delamination.The results showed that the treatment using bamboo material with adhesive Chloroprene sweet heavy labur 250 gr/m2 produce the best plybamboo.Keywords: bamboo, glue, physical, mechanical


1991 ◽  
Vol 40 (449) ◽  
pp. 192-198
Author(s):  
Yasushi MIYANO ◽  
Yukio TAKAMURA ◽  
Megumu SUZUKI ◽  
Michihiro MOHRI

Sign in / Sign up

Export Citation Format

Share Document