scholarly journals A Study on Temperature Dependence of Flexural Strength Distribution for Alumina Ceramics.

1993 ◽  
Vol 59 (563) ◽  
pp. 1656-1662 ◽  
Author(s):  
Tatsuo Sakai ◽  
Yoshinobu Nakama
1991 ◽  
Vol 40 (449) ◽  
pp. 192-198
Author(s):  
Yasushi MIYANO ◽  
Yukio TAKAMURA ◽  
Megumu SUZUKI ◽  
Michihiro MOHRI

2003 ◽  
Vol 134 (1-2) ◽  
pp. 58-64 ◽  
Author(s):  
Hiroya Abe ◽  
Makio Naito ◽  
Tadashi Hotta ◽  
Hidehiro Kamiya ◽  
Keizo Uematsu

1999 ◽  
Vol 14 (8) ◽  
pp. 3370-3374 ◽  
Author(s):  
Yao Zhang ◽  
Mineyuki Inoue ◽  
Nozomu Uchida ◽  
Keizo Uematsu

Characterization of bulk defects was successfully accomplished in alumina with a transmission optical microscope. The characterization technique used is based on the fact that many ceramics are essentially transparent. Most defects in this particular ceramic were found to be pore. Their size distribution was found to follow a simple power function. With these characteristics of defects, the strength distribution of the ceramics was calculated with Baratta's model and compared to the measured strength of the ceramics. A good agreement was found between them when the pore was assumed to be accompanied with cracks 4 times the length of the grain size.


1986 ◽  
Vol 78 ◽  
Author(s):  
T. W. Coyle ◽  
R. P. Ingel ◽  
P. A. Willging

ABSTRACTThe flexural strength and the single edge notch beam fracture toughness of undoped ZrO2 crystals, grown by the skull melting technique, were examined from room temperature to 1400°C. On heating the toughness increased with test temperature to a maximum of 4.0 MPajm at 1225°C then gradually decreased to 2.6 MPa/m. Upon cooling after a 20 minute hold at 1250°C an increase in toughness to 5 MPa/m was observed at 1200°C; upon cooling to lower temperatures Kic gradually diminished. The loaddeflection curves for the flexural strength tests showed marked nonlinearity before failure for samples tested on cooling. The temperature dependence of the apparent yield stress suggests that initial yielding occurs by slip above 1200°C but that from 1200°C to 1050°C the observed yielding is due to stress induced tetragonal to monoclinic transformation.


1996 ◽  
Vol 118 (4) ◽  
pp. 863-871 ◽  
Author(s):  
J. A. Salem ◽  
N. N. Nemeth ◽  
L. M. Powers ◽  
S. R. Choi

The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three-parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.


2011 ◽  
Vol 492 ◽  
pp. 333-336
Author(s):  
Kai Li ◽  
Lu Cun Guo

The thermal shock behavior of alumina ceramics tested by two different approaches, water and air quenching, using an automatic experimental set was investigated. The changes of the flexural strength before and after the thermal shock was measured and used as an indicator of thermal shock resistance. The study reveals that air quenching test has limited impact on the changes of flexural strength, whereas the water quenching yields considerable decreases of the strength. The alumina ceramics was quenched in water at various temperature differences for five cycles. It is shown that the retained strength of the quenched specimens decreases abruptly at the temperature difference of 300°C, which indicates a great severity of thermal shock in this point. The thermal shock behavior of the specimens is evaluated by quenching in water as three different temperature differences, ΔT, setting at 300°C, 600°C and 800°C, respectively. The results show, for three different ΔT quenches, the strength reductions caused by the quenching exhibit similar trends: After a sharp drop, the residual strength remains almost unchanged at a certain level for each given quenching temperature difference, and the turning points all fall in the very first five to ten thermal cycles range. And the rank of the damage severity of alumina ceramics among the three different temperature differences is: ΔT800°C > ΔT600°C > ΔT300°C


2006 ◽  
Vol 15 (6) ◽  
pp. 712-716 ◽  
Author(s):  
S. Wu ◽  
L. Cheng ◽  
N. Dong ◽  
L. Zhang ◽  
Y. Xu

Sign in / Sign up

Export Citation Format

Share Document