Laser heterodyne apparatus for roughness measurements of polished surfaces

1978 ◽  
Vol 17 (23) ◽  
pp. 3827 ◽  
Author(s):  
S. Hård ◽  
O. Nilsson
Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2003 ◽  
Vol 67 (1) ◽  
pp. 241 ◽  
Author(s):  
Michael L. Oelze ◽  
James M. Sabatier ◽  
Richard Raspet

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1557
Author(s):  
Min Xu ◽  
Zhi Li ◽  
Michael Fahrbach ◽  
Erwin Peiner ◽  
Uwe Brand

High-speed tactile roughness measurements set high demand on the trackability of the stylus probe. Because of the features of low mass, low probing force, and high signal linearity, the piezoresistive silicon microprobe is a hopeful candidate for high-speed roughness measurements. This paper investigates the trackability of these microprobes through building a theoretical dynamic model, measuring their resonant response, and performing tip-flight experiments on surfaces with sharp variations. Two microprobes are investigated and compared: one with an integrated silicon tip and one with a diamond tip glued to the end of the cantilever. The result indicates that the microprobe with the silicon tip has high trackability for measurements up to traverse speeds of 10 mm/s, while the resonant response of the microprobe with diamond tip needs to be improved for the application in high-speed topography measurements.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan Gros-Otero ◽  
Samira Ketabi ◽  
Rafael Cañones-Zafra ◽  
Montserrat Garcia-Gonzalez ◽  
Cesar Villa-Collar ◽  
...  

Abstract Background To compare the anterior surface roughness of two commercially available posterior chamber phakic intraocular lenses (IOLs) using atomic force microscopy (AFM). Methods Four phakic IOLs were used for this prospective, experimental study: two Visian ICL EVO+ V5 lenses and two iPCL 2.0 lenses. All of them were brand new, were not previously implanted in humans, were monofocal and had a dioptric power of − 12 diopters (D). The anterior surface roughness was assessed using a JPK NanoWizard II® atomic force microscope in contact mode immersed in liquid. Olympus OMCL-RC800PSA commercial silicon nitride cantilever tips were used. Anterior surface roughness measurements were made in 7 areas of 10 × 10 μm at 512 × 512 point resolution. The roughness was measured using the root-mean-square (RMS) value within the given regions. Results The mean of all anterior surface roughness measurements was 6.09 ± 1.33 nm (nm) in the Visian ICL EVO+ V5 and 3.49 ± 0.41 nm in the iPCL 2.0 (p = 0.001). Conclusion In the current study, we found a statistically significant smoother anterior surface in the iPCL 2.0 phakic intraocular lenses compared with the VISIAN ICL EVO+ V5 lenses when studied with atomic force microscopy.


2015 ◽  
Vol 637 ◽  
pp. 69-73 ◽  
Author(s):  
Krzysztof Stępień

Surface roughness is a factor that has a vital influence on overall quality of machine parts. This is the reason why proper measurements of surface roughness are a matter of great importance in modern manufacturing technology. Nowadays portable profilometers are common instruments to be used under industrial conditions. Measurements with such instruments can be affected by numerous factors, for example environmental changes, human errors of an operator, etc. This paper discusses problem of an evaluation of measurement accuracy of portable profilometers. It also describes the evaluation procedure and presents results experimental tests.


1995 ◽  
Vol 10 (8) ◽  
pp. 1984-1992 ◽  
Author(s):  
X.B. Zhou ◽  
J.Th.M. De Hosson

A this paper the influence of surface roughness on contact angles in the system of liquid Al wetting solid surfaces of Al2O3 has been studied. It was observed that contact angles of liquid Al vary significantly on different rough surfaces of Al2O3. A model is proposed to correlate contact angles with conventional roughness measurements and wavelengths by assuming a cosine profile of rough grooves with a Gaussian distribution of amplitudes. In comparison with the experimental results, the model provides a good estimate for describing the influence of surface roughness on contact angles of liquid Al on Al2O3.


Sign in / Sign up

Export Citation Format

Share Document