Multiwavelength sun-photometer calibration corrected on the basis of the spectral features characterizing particulate extinction and nitrogen dioxide absorption

1985 ◽  
Vol 24 (18) ◽  
pp. 2962 ◽  
Author(s):  
Claudio Tomasi ◽  
Stefano Marani ◽  
Vito Vitale
2012 ◽  
Vol 5 (5) ◽  
pp. 6479-6492
Author(s):  
A. Kreuter ◽  
S. Wuttke ◽  
M. Blumthaler

Abstract. Errors in the sun photometer calibration constant lead to artificial diurnal variations, symmetric around solar noon, of the retrieved Aerosol Optical Depth (AOD) and the associated Ångström exponent α and its curvature γ. We show in simulations that within the uncertainty of state-of-the-art Langley calibrations, these diurnal variations of α and γ can be significant in low AOD conditions, while those of AOD are negligible. We implement a weighted Monte-Carlo method of finding an improved calibration constant by minimizing the diurnal variations in α and γ and apply the method to sun photometer data of a clear day in Innsbruck, Austria. The results show that our method can be used to improve the calibrations in two of the four wavelength channels by up to a factor of 3.6.


2013 ◽  
Vol 6 (1) ◽  
pp. 99-103 ◽  
Author(s):  
A. Kreuter ◽  
S. Wuttke ◽  
M. Blumthaler

Abstract. Errors in the sun photometer calibration constant lead to artificial diurnal variations, symmetric around solar noon, of the retrieved aerosol optical depth (AOD) and the associated Ångström exponent α and its curvature γ. We show in simulations that within the uncertainty of state-of-the-art Langley calibrations, these diurnal variations of α and γ can be significant in low AOD conditions, while those of AOD are negligible. We implement a weighted Monte Carlo method of finding an improved calibration constant by minimizing the diurnal variations in α and γ and apply the method to sun photometer data of a clear day in Innsbruck, Austria. The results show that our method can be used to improve the calibrations in two of the four wavelength channels by up to a factor of 3.6.


Author(s):  
J.C.S. Kim ◽  
M.G. Jourden ◽  
E.S. Carlisle

Chronic exposure to nitrogen dioxide in rodents has shown that injury reaches a maximum after 24 hours, and a reparative adaptive phase follows (1). Damage occurring in the terminal bronchioles and proximal portions of the alveolar ducts in rats has been extensively studied by both light and electron microscopy (1).The present study was undertaken to compare the response of lung tissue to intermittent exposure to 10 ppm of nitrogen dioxide gas for 4 hours per week, while the hamsters were on a vitamin A deficient diet. Ultrastructural observations made from lung tissues obtained from non-gas exposed, hypovitaminosis A animals and gas exposed animals fed a regular commercially prepared diet have been compared to elucidate the specific effect of vitamin A on nitrogen dioxide gas exposure. The interaction occurring between vitamin A and nitrogen dioxide gas has not previously been investigated.


Sign in / Sign up

Export Citation Format

Share Document