Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle

2004 ◽  
Vol 43 (31) ◽  
pp. 5772 ◽  
Author(s):  
Haiying Cheng ◽  
Qingming Luo ◽  
Shaoqun Zeng ◽  
Shangbin Chen ◽  
Weihua Luo ◽  
...  
2019 ◽  
Vol 40 (10) ◽  
pp. 2038-2054 ◽  
Author(s):  
Antoine Anfray ◽  
Antoine Drieu ◽  
Vincent Hingot ◽  
Yannick Hommet ◽  
Mervé Yetim ◽  
...  

The increase of cerebral blood flow evoked by neuronal activity is essential to ensure enough energy supply to the brain. In the neurovascular unit, endothelial cells are ideally placed to regulate key neurovascular functions of the brain. Nevertheless, some outstanding questions remain about their exact role neurovascular coupling (NVC). Here, we postulated that the tissue-type plasminogen activator (tPA) present in the circulation might contribute to NVC by a mechanism dependent of its interaction with endothelial N-Methyl-D-Aspartate Receptor (NMDAR). To address this question, we used pharmacological and genetic approaches to interfere with vascular tPA-dependent NMDAR signaling, combined with laser speckle flowmetry, intravital microscopy and ultrafast functional ultrasound in vivo imaging. We found that the tPA present in the blood circulation is capable of potentiating the cerebral blood flow increase induced by the activation of the mouse somatosensorial cortex, and that this effect is mediated by a tPA-dependent activation of NMDAR expressed at the luminal part of endothelial cells of arteries. Although blood molecules, such as acetylcholine, bradykinin or ATP are known to regulate vascular tone and induce vessel dilation, our present data provide the first evidence that circulating tPA is capable of influencing neurovascular coupling (NVC).


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

2021 ◽  
pp. 0271678X2110034
Author(s):  
Gianna Huber ◽  
Mikolaj Ogrodnik ◽  
Jan Wenzel ◽  
Ines Stölting ◽  
Lukas Huber ◽  
...  

Angiotensin II receptor blockers (telmisartan) prevent rodents from diet-induced obesity and improve their metabolic status. Hyperglycemia and obesity are associated with reduced cerebral blood flow and neurovascular uncoupling which may lead to behavioral deficits. We wanted to know whether a treatment with telmisartan prevents these changes in obesity. We put young mice on high-fat diet and simultaneously treated them with telmisartan. At the end of treatment, we performed laser speckle imaging and magnetic resonance imaging to assess the effect on neurovascular coupling and cerebral blood flow. Different behavioral tests were used to investigate cognitive function. Mice developed diet-induced obesity and after 16, not 8 weeks of high-fat diet, however, the response to whisker pad stimulation was about 30% lower in obese compared to lean mice. Simultaneous telmisartan treatment increased the response again by 10% compared to obese mice. Moreover, telmisartan treatment normalized high-fat diet-induced reduction of cerebral blood flow and prevented a diet-induced anxiety-like behavior. In addition to that, telmisartan affects cellular senescence and string vessel formation in obesity. We conclude, that telmisartan protects against neurovascular unit impairments in a diet-induced obesity setting and may play a role in preventing obesity related cognitive deficits in Alzheimer’s disease.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yedan Liu ◽  
Shaoxun Wang ◽  
Ya Guo ◽  
Huawei Zhang ◽  
Richard Roman ◽  
...  

Diabetes is the primary pathological factor attributed to Alzheimer’s disease and vascular cognitive impairment. Previous studies demonstrated that hyperglycemia promoted oxidative stress in the cerebral vasculature. Cerebrovascular pericytes contribute to maintaining blood-brain barrier (BBB) integrity and regulating cerebral blood flow (CBF). However, whether hyperglycemia diminishes the contractile capability of pericytes, impairs CBF autoregulation and increases BBB permeability are unclear. In the present study, we examined the role of pericytes in cerebrovascular function and cognition in diabetes using cell culture in vitro , isolated penetrating arterioles ex vivo and CBF autoregulation in vivo . Reactive oxygen species were elevated in high glucose (HG, 30 mM) treated vs. normal glucose (NG, 5.5 mM) treated pericytes. Further, mitochondrial superoxide production was increased in HG-treated vs. NG-treated group (13.24 ± 1.01 arbitrary unit (a.u.)/30min vs. 6.98 ± 0.36 a.u./30min). Mitochondrial respiration decreased in HG-treated vs. NG-treated pericytes (3718 ± 185.9 pmol/min/mg, n=10 vs. 4742 ± 284.5 pmol/min/mg, n=10) as measured by a Seahorse XFe24 analyzer. HG-treated pericytes displayed fragmented mitochondria in association with increased fission protein (DRP1) and decreased fusion protein (OPA1) expression. HG-treated pericytes displayed lower contractile capability than NG-treated cells (20.23 ± 7.15% vs. 29.46 ± 9.41%). The myogenic response was impaired in penetrating arterioles isolated from diabetic rats in comparison with non-diabetic rats. Autoregulation of CBF measured by a laser Doppler flowmeter was impaired in diabetic rats compared with non-diabetic rats. Diabetic rats exhibited greater BBB leakage than control rats. The cognitive function was examined using an eight-arm water maze. Diabetic rats took longer time to escape than the non-diabetic rats indicating learning and memory deficits. In conclusion, hyperglycemia induces pericyte dysfunction by altering mitochondrial dynamics and diminishing contractile capability, which promotes BBB leakage, decreases CBF autoregulation and contributes to diabetes-related dementia.


2017 ◽  
Vol 46 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yu-xing Fei ◽  
Tian-hong Zhang ◽  
Jing Zhao ◽  
He Ren ◽  
Ya-nan Du ◽  
...  

Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.


2001 ◽  
Vol 1 ◽  
pp. 168-180 ◽  
Author(s):  
Lars Edvinsson ◽  
Peter J. Goadsby ◽  
Rolf Uddman

Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.


Sign in / Sign up

Export Citation Format

Share Document