Efficient sampling-based imaging model forfast source and mask optimization inimmersion lithography

2021 ◽  
Author(s):  
Yiyu Sun ◽  
Yanqiu Li ◽  
Guanghui Liao ◽  
Miao Yuan ◽  
Pengzhi Wei ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2328
Author(s):  
Mohammed Alzubaidi ◽  
Kazi N. Hasan ◽  
Lasantha Meegahapola ◽  
Mir Toufikur Rahman

This paper presents a comparative analysis of six sampling techniques to identify an efficient and accurate sampling technique to be applied to probabilistic voltage stability assessment in large-scale power systems. In this study, six different sampling techniques are investigated and compared to each other in terms of their accuracy and efficiency, including Monte Carlo (MC), three versions of Quasi-Monte Carlo (QMC), i.e., Sobol, Halton, and Latin Hypercube, Markov Chain MC (MCMC), and importance sampling (IS) technique, to evaluate their suitability for application with probabilistic voltage stability analysis in large-scale uncertain power systems. The coefficient of determination (R2) and root mean square error (RMSE) are calculated to measure the accuracy and the efficiency of the sampling techniques compared to each other. All the six sampling techniques provide more than 99% accuracy by producing a large number of wind speed random samples (8760 samples). In terms of efficiency, on the other hand, the three versions of QMC are the most efficient sampling techniques, providing more than 96% accuracy with only a small number of generated samples (150 samples) compared to other techniques.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Huajun Song ◽  
Rui Wang

Aimed at the two problems of color deviation and poor visibility of the underwater image, this paper proposes an underwater image enhancement method based on the multi-scale fusion and global stretching of dual-model (MFGS), which does not rely on the underwater optical imaging model. The proposed method consists of three stages: Compared with other color correction algorithms, white-balancing can effectively eliminate the undesirable color deviation caused by medium attenuation, so it is selected to correct the color deviation in the first stage. Then, aimed at the problem of the poor performance of the saliency weight map in the traditional fusion processing, this paper proposed an updated strategy of saliency weight coefficient combining contrast and spatial cues to achieve high-quality fusion. Finally, by analyzing the characteristics of the results of the above steps, it is found that the brightness and clarity need to be further improved. The global stretching of the full channel in the red, green, blue (RGB) model is applied to enhance the color contrast, and the selective stretching of the L channel in the Commission International Eclairage-Lab (CIE-Lab) model is implemented to achieve a better de-hazing effect. Quantitative and qualitative assessments on the underwater image enhancement benchmark dataset (UIEBD) show that the enhanced images of the proposed approach achieve significant and sufficient improvements in color and visibility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Pyo Kim ◽  
Jonghoon Kim ◽  
Hyemin Jang ◽  
Jaeho Kim ◽  
Sung Hoon Kang ◽  
...  

AbstractPredicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71–0.74, AUC for validation = 0.68–0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.


2012 ◽  
Vol 588-589 ◽  
pp. 1337-1340
Author(s):  
Y.X. Zhu ◽  
X.S. Duan

For the pose measurement of cannon barrel, a vision method through checked plane had been proposed. To test and improve the precision of this new method without considering the hardware error and some other inextricable objective factors,derive the imaging model of the marker (checked plane) from motion model of cannon barrel and the position relative to it using variable-controlling method. Establish the computer simulation platform of vision measurement system for cannon barrel pose based on C++ Builder. The simulation experiment validate the veracity and dependability of this method.


Sign in / Sign up

Export Citation Format

Share Document