scholarly journals Structured Illumination based transport of intensityphase imaging for quantitative diagnostics of highspeed flows

2022 ◽  
Author(s):  
Biswajit Medhi
2010 ◽  
Vol 20 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Edouard Berrocal ◽  
Elias Kristensson ◽  
Mattias Richter ◽  
Mark Linne ◽  
Marcus Alden

Methods ◽  
2015 ◽  
Vol 75 ◽  
pp. 61-68 ◽  
Author(s):  
Laure-Anne Ligeon ◽  
Nicolas Barois ◽  
Elisabeth Werkmeister ◽  
Antonino Bongiovanni ◽  
Frank Lafont

ACS Photonics ◽  
2021 ◽  
Author(s):  
Alice Sandmeyer ◽  
Mario Lachetta ◽  
Hauke Sandmeyer ◽  
Wolfgang Hübner ◽  
Thomas Huser ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karin Legerstee ◽  
Tsion E. Abraham ◽  
Wiggert A. van Cappellen ◽  
Alex L. Nigg ◽  
Johan A. Slotman ◽  
...  

AbstractFocal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Schmidt ◽  
Adam C. Hundahl ◽  
Henrik Flyvbjerg ◽  
Rodolphe Marie ◽  
Kim I. Mortensen

AbstractUntil very recently, super-resolution localization and tracking of fluorescent particles used camera-based wide-field imaging with uniform illumination. Then it was demonstrated that structured illuminations encode additional localization information in images. The first demonstration of this uses scanning and hence suffers from limited throughput. This limitation was mitigated by fusing camera-based localization with wide-field structured illumination. Current implementations, however, use effectively only half the localization information that they encode in images. Here we demonstrate how all of this information may be exploited by careful calibration of the structured illumination. Our approach achieves maximal resolution for given structured illumination, has a simple data analysis, and applies to any structured illumination in principle. We demonstrate this with an only slightly modified wide-field microscope. Our protocol should boost the emerging field of high-precision localization with structured illumination.


Sign in / Sign up

Export Citation Format

Share Document