scholarly journals Influence of FRET and fluorescent protein maturation on the quantification of binding affinity with dual-channel fluorescence cross-correlation spectroscopy

2020 ◽  
Vol 11 (11) ◽  
pp. 6137
Author(s):  
Varun K. A. Sreenivasan ◽  
Matthew S. Graus ◽  
Rashmi R. Pillai ◽  
Zhengmin Yang ◽  
Jesse Goyette ◽  
...  
2021 ◽  
Vol 14 (8) ◽  
pp. 757
Author(s):  
Iga Jakobowska ◽  
Frank Becker ◽  
Stefano Minguzzi ◽  
Kerrin Hansen ◽  
Björn Henke ◽  
...  

Blocking lactate export in the parasitic protozoan Plasmodium falciparum is a novel strategy to combat malaria. We discovered small drug-like molecules that inhibit the sole plasmodial lactate transporter, PfFNT, and kill parasites in culture. The pentafluoro-3-hydroxy-pent-2-en-1-one BH296 blocks PfFNT with nanomolar efficiency but an in vitro selected PfFNT G107S mutation confers resistance against the drug. We circumvented the mutation by introducing a nitrogen atom as a hydrogen bond acceptor site into the aromatic ring of the inhibitor yielding BH267.meta. The current PfFNT inhibitor efficiency values were derived from yeast-based lactate transport assays, yet direct affinity and binding kinetics data are missing. Here, we expressed PfFNT fused with a green fluorescent protein in human embryonic kidney cells and generated fluorescent derivatives of the inhibitors, BH296 and BH267.meta. Using confocal imaging, we confirmed the location of the proposed binding site at the cytosolic transporter entry site. We then carried out fluorescence cross-correlation spectroscopy measurements to assign true Ki-values, as well as kon and koff rate constants for inhibitor binding to PfFNT wildtype and the G107S mutant. BH296 and BH267.meta gave similar rate constants for binding to PfFNT wildtype. BH296 was inactive on PfFNT G107S, whereas BH267.meta bound the mutant protein albeit with weaker affinity than to PfFNT wildtype. Eventually, using a set of PfFNT inhibitor compounds, we found a robust correlation of the results from the biophysical FCCS binding assay to inhibition data of the functional transport assay.


2006 ◽  
Vol 91 (5) ◽  
pp. L45-L47 ◽  
Author(s):  
Peter Dedecker ◽  
Jun-ichi Hotta ◽  
Ryoko Ando ◽  
Atsushi Miyawaki ◽  
Yves Engelborghs ◽  
...  

2000 ◽  
Vol 113 (22) ◽  
pp. 3921-3930 ◽  
Author(s):  
R.H. Kohler ◽  
P. Schwille ◽  
W.W. Webb ◽  
M.R. Hanson

Dynamic tubular projections emanate from plastids in certain cells of vascular plants and are especially prevalent in non-photosynthetic cells. Tubules sometimes connect two or more different plastids and can extend over long distances within a cell, observations that suggest that the tubules may function in distribution of molecules within, to and from plastids. In a new application of two-photon excitation (2PE) fluorescence correlation spectroscopy (FCS), we separated diffusion of fluorescent molecules from active transport in vivo. We quantified the velocities of diffusion versus active transport of green fluorescent protein (GFP) within plastid tubules and in the cytosol in vivo. GFP moves by 3-dimensional (3-D) diffusion both in the cytosol and plastid tubules, but diffusion in tubules is about 50 times and 100 times slower than in the cytosol and an aqueous solution, respectively. Unexpectedly larger GFP units within plastid tubules exhibited active transport with a velocity of about 0.12 microm/second. Active transport might play an important role in the long-distance distribution of large numbers of molecules within the highly viscous stroma of plastid tubules.


Lab on a Chip ◽  
2011 ◽  
Vol 11 (8) ◽  
pp. 1502 ◽  
Author(s):  
A. Chen ◽  
M. M. Eberle ◽  
E. J. Lunt ◽  
S. Liu ◽  
K. Leake ◽  
...  

2017 ◽  
Author(s):  
Ali Isbilir ◽  
Jan Möller ◽  
Andreas Bock ◽  
Ulrike Zabel ◽  
Paolo Annibale ◽  
...  

AbstractG protein-coupled receptors (GPCRs) represent the largest class of cell surface receptors conveying extracellular information into intracellular signals. Many GPCRs have been shown to be able to oligomerize and it is firmly established that Class C GPCRs (e.g. metabotropic glutamate receptors) function as obligate dimers. However, the oligomerization capability of the larger Class A GPCRs (e.g. comprising the β-adrenergic receptors (β-ARs)) is still, despite decades of research, highly debated.Here we assess the oligomerization behavior of three prototypical Class A GPCRs, the β1-ARs, β2-ARs, and muscarinic M2Rs in single, intact cells. We combine two image correlation spectroscopy methods based on molecular brightness, i.e. the analysis of fluorescence fluctuations over space and over time, and thereby provide an assay able to robustly and precisely quantify the degree of oligomerization of GPCRs. In addition, we provide a comparison between two labelling strategies, namely C-terminally-attached fluorescent proteins and N-terminally-attached SNAP-tags, in order to rule out effects arising from potential fluorescent protein-driven oligomerization. The degree of GPCR oligomerization is expressed with respect to a set of previously reported as well as newly established monomeric or dimeric control constructs. Our data reveal that all three prototypical GPRCs studied display, under unstimulated conditions, a prevalently monomeric fingerprint. Only the β2-AR shows a slight degree of oligomerization.From a methodological point of view, our study suggests three key aspects. First, the combination of two image correlation spectroscopy methods allows addressing cells transiently expressing high concentrations of membrane receptors, far from the single molecule regime, at a density where the kinetic equilibrium should favor dimers and higher-order oligomers. Second, our methodological approach, allows to selectively target cell membrane regions devoid of artificial oligomerization hot-spots (such as vesicles). Third, our data suggest that the β1-AR appears to be a superior monomeric control than the widely used membrane protein CD86.Taken together, we suggest that our combined image correlation spectroscopy method is a powerful approach to assess the oligomerization behavior of GPCRs in intact cells at high expression levels.


2020 ◽  
Author(s):  
Àngels Mateu-Regué ◽  
Jan Christiansen ◽  
Christian Hellriegel ◽  
Finn Cilius Nielsen

ABSTRACTUnderstanding the mRNA life cycle requires analysis of the dynamic macromolecular composition and stoichiometry of mRNPs. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are appealing technologies to study mRNP complexes because they readily provide information about the molecular composition, stoichiometry, heterogeneity and dynamics of the particles. We developed FCS protocols for analysis of live cells and cellular lysates, and demonstrate the feasibility of analysing common cytoplasmic mRNPs composed of core factor YBX1, IMPs (or IGF2BPs) and their interactions with other RNA binding proteins such as PABPC1, ELAVL2 (HuB), STAU1 and FMRP. FCCS corroborated previously reported RNA dependent interactions between the factors and provided an estimate of the relative overlap between the factors in the mRNPs. In this way FCS and FCCS provide a new and useful approach for the quantitative and dynamic analysis of mRNP macromolecular complexes that may complement current biochemical approaches.


Sign in / Sign up

Export Citation Format

Share Document