scholarly journals InstantScope: a low-cost whole slide imaging system with instant focal plane detection

2015 ◽  
Vol 6 (9) ◽  
pp. 3210 ◽  
Author(s):  
Kaikai Guo ◽  
Jun Liao ◽  
Zichao Bian ◽  
Xin Heng ◽  
Guoan Zheng
2021 ◽  
Author(s):  
Kaifa Xin ◽  
Shaowei Jiang ◽  
xu chen ◽  
Yonghong He ◽  
Jian Zhang ◽  
...  

2019 ◽  
Vol 45 (1) ◽  
pp. 260 ◽  
Author(s):  
Chengfei Guo ◽  
Zichao Bian ◽  
Shaowei Jiang ◽  
Michael Murphy ◽  
Jiakai Zhu ◽  
...  

2010 ◽  
Author(s):  
Wendy L. Sarney ◽  
John W. Little ◽  
Kimberley A. Olver ◽  
Frank E. Livingston ◽  
Krisztian Niesz ◽  
...  

Author(s):  
Chung Hsing Li ◽  
Tzu-Chao Yan ◽  
Yuhsin Chang ◽  
Chyong Chen ◽  
Chien-Nan Kuo

1984 ◽  
Vol 17 (6) ◽  
pp. 526-532 ◽  
Author(s):  
G F Kirkbright ◽  
R M Miller ◽  
A Rzadkiewicz

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1762
Author(s):  
Yuki Gao ◽  
Maryam Ravan ◽  
Reza K. Amineh

The use of non-metallic pipes and composite components that are low-cost, durable, light-weight, and resilient to corrosion is growing rapidly in various industrial sectors such as oil and gas industries in the form of non-metallic composite pipes. While these components are still prone to damages, traditional non-destructive testing (NDT) techniques such as eddy current technique and magnetic flux leakage technique cannot be utilized for inspection of these components. Microwave imaging can fill this gap as a favorable technique to perform inspection of non-metallic pipes. Holographic microwave imaging techniques are fast and robust and have been successfully employed in applications such as airport security screening and underground imaging. Here, we extend the use of holographic microwave imaging to inspection of multiple concentric pipes. To increase the speed of data acquisition, we utilize antenna arrays along the azimuthal direction in a cylindrical setup. A parametric study and demonstration of the performance of the proposed imaging system will be provided.


2022 ◽  
Vol 15 (2) ◽  
pp. 027001
Author(s):  
Yang Cui ◽  
Taiki Takamatsu ◽  
Koichi Shimizu ◽  
Takeo Miyake

Abstract As for the diagnosis and treatment of eye diseases, an ideal fundus imaging system is expected to be portability, low cost, and high resolution. Here, we demonstrate a non-mydriatic near-infrared fundus imaging system with light illumination from an electronic contact lens (E-lens). The E-lens can illuminate the retinal and choroidal structures for capturing the fundus images when voltage is applied wirelessly to the lens. And we also reconstruct the images with a depth-dependent point-spread function to suppress the scattering effect that eventually visualizes the clear fundus images.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Kang Zhang ◽  
Jolene Zheng ◽  
Chenfei Gao ◽  
Diana Thomas ◽  
Xin Li ◽  
...  

2012 ◽  
Vol 571 ◽  
pp. 324-327
Author(s):  
A Qi Yan ◽  
Deng Shan Wu ◽  
Hao Wang ◽  
Jian Zhong Cao ◽  
Jing Jin Ma ◽  
...  

Infrared zoom lens system with cooled focal plane array (FPA) detector is widely used in military application. Relevant information about optical design can be got easily, but research on infrared zoom lens system with low cost and high image quality for commercial application is less. This paper design a Compact infrared zoom lens system with only four lenses, using an uncooled focal plane array (FPA) with 384×288 pixels with zoom ratio 3:1. Because of large F number and less lenses, transmission of the whole zoom system is greatly improved. NETD and MRTD of infrared system will be satisfying by this compact design. There is no special surface such as diffractive surface, HOE in zoom lens system, and only Ge and Znse infrared materials are chosen which result in lower production cost of infrared zoom lens system for commercial applications.


Sign in / Sign up

Export Citation Format

Share Document