Laser Direct Ablation for Patterning Printed Wiring Boards Using Ultrafast Lasers and High Speed Beam Delivery Architectures

Author(s):  
Hisashi Matsumoto ◽  
Mark Unrath ◽  
Jan Kleinert ◽  
Haibin Zhang
2012 ◽  
Vol 523-524 ◽  
pp. 509-514 ◽  
Author(s):  
Naoya Noguchi ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
Yutaka Takeda

There have been few reports dealing with the drilling of printed wiring boards (PWBs) with micro-drills that are smaller than 0.2 mm in diameter, and super-high-speed spindles that are higher than 160,000 rpm. In these cases, preventing the micro-drill from breaking and keeping the position accuracy of the drilled hole has been difficult. We therefore focus on the high-speed step-drilling method and short stroke as a novel way of resolving these problems. On the other hand, determining the complicated combination of feed speed, rapid feed speed, and stroke length is difficult. Under these backgrounds, in this report we propose a fast-feed step cycle that use fast-feed command without the processing feed. Thus, we attempted to apply the response surface method to optimize these parameters. As a result, a proposed method was found to be effective to improve the drilled hole quality and drilling efficiency in such kinds of micro-drilling of the PWBs.


2010 ◽  
Vol 447-448 ◽  
pp. 836-840 ◽  
Author(s):  
Eiichi Aoyama ◽  
Toshiki Hirogaki ◽  
Keiji Ogawa ◽  
Satoshi Nojiri ◽  
Yutaka Takeda

A drilling technique using micro-drills of 0.2 mm or less in diameter and a super-high-speed spindle of 160000 rpm or more has been developed for drilling ultra-micro holes in printed wiring boards (PWBs). The drilling process requires higher reliability and quality to maintain the reliability of the electrical connection between circuit layers. On the other hand, higher processing efficiency is also required in PWBs manufacturing. To maintain high productivity, drilling is normally performed using a non-step method, but heat damage called B-RING occurs around the drilled holes with this method. To solve these problems without the loss of processing efficiency, we applied the rapid-feed step-drilling cycle method. We investigated the B-RING for drilling quality and evaluated the drilling time for processing efficiency under various drilling conditions. We found that using a rapid-feed step-drilling cycle with an appropriate number of steps and feed rates ensures a higher level of hole quality and processing efficiency compared with the conventional non-step drilling.


2016 ◽  
Vol 874 ◽  
pp. 285-290 ◽  
Author(s):  
Koji Kanki ◽  
Munetaka Iozumi ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa

In recent years, the performance and miniaturization of portable information devices have rapidly advanced. The build-up process is often used in the manufacturing of printed wiring boards (PWBs) for high-density circuits. At present, CO2 laser beams are generally used in the build-up process to drill blind via holes (BVHs) that connect copper foils. However, Cu direct drilling is problematic in that it produces a copper overhang as a result of copper and resin, with different decomposition points, being melted simultaneously. Overhang could cause an adverse effect in plating the hole for connectivity. However, only few studies have investigated Cu direct processing for drilling BVHs. At an actual production site of PWBs, the number of processing holes is enormous, which leads to neglecting the quality of each processed hole. Therefore, we focused on pulse drilling, which involves laser irradiation using short multiple pulses to reduce the thermal effect. Pulse drilling could reduce overhang compared to single pulse irradiation; however, it lengthens the total processing time. Pulse irradiation after BVH formation would be unnecessary, since it could cause thermal damage to the hole and lengthen the processing time. Therefore, during pulse irradiation, it is essential to distinguish whether a BVH is formed. We observed the value of the motion graph, which was acquired from the high-speed camera images. The motion graph shows the luminance value of an image at a given time of the video. Based on the peak time of the motion graph during each pulse, we proposed a method to distinguish BVH formation during multiple pulse drilling.


Sign in / Sign up

Export Citation Format

Share Document