Mid-infrared photothermal interferometric gas sensing in hollow-core optical fibers

Author(s):  
Chenyu Yao ◽  
Zhili Li ◽  
Fan Yang ◽  
Wei Jin ◽  
Wei Ren
Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3813 ◽  
Author(s):  
Piotr Jaworski ◽  
Paweł Kozioł ◽  
Karol Krzempek ◽  
Dakun Wu ◽  
Fei Yu ◽  
...  

In this work, we present for the first time a laser-based dual gas sensor utilizing a silica-based Antiresonant Hollow-Core Fiber (ARHCF) operating in the Near- and Mid-Infrared spectral region. A 1-m-long fiber with an 84-µm diameter air-core was implemented as a low-volume absorption cell in a sensor configuration utilizing the simple and well-known Wavelength Modulation Spectroscopy (WMS) method. The fiber was filled with a mixture of methane (CH4) and carbon dioxide (CO2), and a simultaneous detection of both gases was demonstrated targeting their transitions at 3.334 µm and 1.574 µm, respectively. Due to excellent guidance properties of the fiber and low background noise, the proposed sensor reached a detection limit down to 24 parts-per-billion by volume for CH4 and 144 parts-per-million by volume for CO2. The obtained results confirm the suitability of ARHCF for efficient use in gas sensing applications for over a broad spectral range. Thanks to the demonstrated low loss, such fibers with lengths of over one meter can be used for increasing the laser-gas molecules interaction path, substituting bulk optics-based multipass cells, while delivering required flexibility, compactness, reliability and enhancement in the sensor’s sensitivity.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3352 ◽  
Author(s):  
Karol Krzempek ◽  
Krzysztof Abramski ◽  
Michal Nikodem

In this paper, we demonstrate the laser-based gas sensing of methane near 3.3 µm inside hollow-core photonic crystal fibers. We exploit a novel anti-resonant Kagome-type hollow-core fiber with a large core diameter (more than 100 µm) which results in gas filling times of less than 10 s for 1.3-m-long fibers. Using a difference frequency generation source and chirped laser dispersion spectroscopy technique, methane sensing with sub-parts-per-million by volume detection limit is performed. The detection of ambient methane is also demonstrated. The presented results indicate the feasibility of using a hollow-core fiber for increasing the path-length and improving the sensitivity of the mid-infrared gas sensors.


2019 ◽  
Vol 27 (25) ◽  
pp. 36350 ◽  
Author(s):  
Michal Nikodem ◽  
Grzegorz Gomółka ◽  
Mariusz Klimczak ◽  
Dariusz Pysz ◽  
Ryszard Buczyński

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3983
Author(s):  
Michal Nikodem

Thanks to the guidance of an optical wave in air, hollow-core fibers may serve as sampling cells in an optical spectroscopic system. This paper reviews applications of hollow-core optical fibers to laser-based gas sensing. Three types of hollow-core fibers are discussed: Hollow capillary waveguides, photonic band-gap fibers, and negative curvature fibers. Their advantages and drawbacks when used for laser-based trace gas detection are analyzed. Various examples of experimental sensing systems demonstrated in the literature over the past 20 years are discussed.


2012 ◽  
Vol 61 (5) ◽  
pp. 054214
Author(s):  
Shi Li-Chao ◽  
Zhang Wei ◽  
Jin Jie ◽  
Huang Yi-Dong ◽  
Peng Jiang-De

Fibers ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Katsumasa Iwai ◽  
Hiroyuki Takaku ◽  
Mitsunobu Miyagi ◽  
Yi-Wei Shi ◽  
Yuji Matsuura

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 420
Author(s):  
Ang Deng ◽  
Wonkeun Chang

We numerically investigate the effect of scaling two key structural parameters in antiresonant hollow-core fibers—dielectric wall thickness of the cladding elements and core size—in view of low-loss mid-infrared beam delivery. We demonstrate that there exists an additional resonance-like loss peak in the long-wavelength limit of the first transmission band in antiresonant hollow-core fibers. We also find that the confinement loss in tubular-type hollow-core fibers depends strongly on the core size, where the degree of the dependence varies with the cladding tube size. The loss scales with the core diameter to the power of approximately −5.4 for commonly used tubular-type hollow-core fiber designs.


Sign in / Sign up

Export Citation Format

Share Document