In Vivo Three-photon Calcium Imaging of Brain Activity from Layer 6 Neurons in Mouse Brain

Author(s):  
Dimitre G. Ouzounov ◽  
Nicholas Horton ◽  
Tianyu Wang ◽  
Danielle Feng ◽  
Nozomi Nishimura ◽  
...  
2021 ◽  
Author(s):  
Alex A. Legaria ◽  
Julia A. Licholai ◽  
Alexxai V. Kravitz

AbstractFiber photometry recordings are commonly used as a proxy for neuronal activity, based on the assumption that increases in bulk calcium fluorescence reflect increases in spiking of the underlying neural population. However, this assumption has not been adequately tested. Here, using endoscopic calcium imaging in the striatum we report that the bulk fluorescence signal correlates weakly with somatic calcium signals, suggesting that this signal does not reflect spiking activity, but may instead reflect subthreshold changes in neuropil calcium. Consistent with this suggestion, the bulk fluorescence photometry signal correlated strongly with neuropil calcium signals extracted from these same endoscopic recordings. We further confirmed that photometry did not reflect striatal spiking activity with simultaneous in vivo extracellular electrophysiology and fiber photometry recordings in awake behaving mice. We conclude that the fiber photometry signal should not be considered a proxy for spiking activity in neural populations in the striatum.Significance statementFiber photometry is a technique for recording brain activity that has gained popularity in recent years due to it being an efficient and robust way to record the activity of genetically defined populations of neurons. However, it remains unclear what cellular events are reflected in the photometry signal. While it is often assumed that the photometry signal reflects changes in spiking of the underlying cell population, this has not been adequately tested. Here, we processed calcium imaging recordings to extract both somatic and non-somatic components of the imaging field, as well as a photometry signal from the whole field. Surprisingly, we found that the photometry signal correlated much more strongly with the non-somatic than the somatic signals. This suggests that the photometry signal most strongly reflects subthreshold changes in calcium, and not spiking. We confirmed this point with simultaneous fiber photometry and extracellular spiking recordings, again finding that photometry signals relate poorly to spiking in the striatum. Our results may change interpretations of studies that use fiber photometry as an index of spiking output of neural populations.


Author(s):  
Dimitre G. Ouzounov ◽  
Tianyu Wang ◽  
Nicholas G. Horton ◽  
Jean C. Cruz Hernández ◽  
Danielle Feng ◽  
...  

2019 ◽  
Author(s):  
Andreas Spiegler ◽  
Javad Karimi Abadchi ◽  
Majid Mohajerani ◽  
Viktor K. Jirsa

ABSTRACTSensory and direct stimulation of the brain probes its functional repertoire and the information processing capacity of networks. However, a systematic exploration can only be performed in silico. Stimulation takes the system out of its attractor states and samples the environment of the flow to gain insight into the stability and multiplicity of trajectories. It is the only means of obtaining a complete understanding of the healthy brain network’s dynamic properties. We built a whole mouse brain model with connectivity derived from tracer studies. We systematically varied the stimulation location, the ratio of long- to short-range interactions, and the range of short connections. Functional networks appeared in the spatial motifs of simulated brain activity. Several motifs included the default mode network, suggesting a junction of functional networks. The model explains processing in sensory systems and replicates the in vivo dynamics after stimulation without parameter tuning, emphasizing the role of connectivity.


Author(s):  
Dimitre G. Ouzounov ◽  
Tianyu Wang ◽  
Nicholas Horton ◽  
Jean Hernandez ◽  
Danielle Feng ◽  
...  

Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 67 ◽  
Author(s):  
Oleksiy Degtyaruk ◽  
Benedict Mc Larney ◽  
Xosé Deán-Ben ◽  
Shy Shoham ◽  
Daniel Razansky

One main limitation of established neuroimaging methods is the inability to directly visualize large-scale neural dynamics in whole mammalian brains at subsecond speeds. Optoacoustic imaging has advanced in recent years to provide unique advantages for real-time deep-tissue observations, which have been exploited for three-dimensional imaging of both cerebral hemodynamic parameters and direct calcium activity in rodents. Due to a lack of suitable calcium indicators excitable in the near-infrared window, optoacoustic imaging of neuronal activity at deep-seated areas of the mammalian brain has been impeded by the strong absorption of blood in the visible range of the light spectrum. To overcome this, we have developed and validated an intracardially perfused mouse brain preparation labelled with genetically encoded calcium indicator GCaMP6f that closely resembles in vivo conditions. By overcoming the limitations of hemoglobin-based light absorption, this new technique was used to observe stimulus-evoked calcium dynamics in the brain at penetration depths and spatio-temporal resolution scales not attainable with existing neuroimaging techniques.


2006 ◽  
Vol 37 (03) ◽  
Author(s):  
R Trollmann ◽  
K Strasser ◽  
J Soliz ◽  
D Wenzel ◽  
W Rascher ◽  
...  

Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


Sign in / Sign up

Export Citation Format

Share Document