scholarly journals Optoacoustic Calcium Imaging of Deep Brain Activity in an Intracardially Perfused Mouse Brain Model

Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 67 ◽  
Author(s):  
Oleksiy Degtyaruk ◽  
Benedict Mc Larney ◽  
Xosé Deán-Ben ◽  
Shy Shoham ◽  
Daniel Razansky

One main limitation of established neuroimaging methods is the inability to directly visualize large-scale neural dynamics in whole mammalian brains at subsecond speeds. Optoacoustic imaging has advanced in recent years to provide unique advantages for real-time deep-tissue observations, which have been exploited for three-dimensional imaging of both cerebral hemodynamic parameters and direct calcium activity in rodents. Due to a lack of suitable calcium indicators excitable in the near-infrared window, optoacoustic imaging of neuronal activity at deep-seated areas of the mammalian brain has been impeded by the strong absorption of blood in the visible range of the light spectrum. To overcome this, we have developed and validated an intracardially perfused mouse brain preparation labelled with genetically encoded calcium indicator GCaMP6f that closely resembles in vivo conditions. By overcoming the limitations of hemoglobin-based light absorption, this new technique was used to observe stimulus-evoked calcium dynamics in the brain at penetration depths and spatio-temporal resolution scales not attainable with existing neuroimaging techniques.

Author(s):  
Pengrui Zhuang ◽  
Ke Xiang ◽  
Xiangxi Meng ◽  
Guohe Wang ◽  
Ziyuan Li ◽  
...  

A facile and green method was developed to fabricate Nd-DTPA on a large scale without byproducts for CT/spectral CT and NIR II fluorescence imaging of the gastrointestinal tract in vivo.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Shashank Chetty ◽  
S. Praneetha ◽  
Sandeep Basu ◽  
Chetana Sachidanandan ◽  
A. Vadivel Murugan

Abstract Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).


2011 ◽  
Vol 5 ◽  
Author(s):  
Monica L. Berlanga ◽  
Sébastien Phan ◽  
Eric A. Bushong ◽  
Stephanie Wu ◽  
Ohkyung Kwon ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marija Markicevic ◽  
Iurii Savvateev ◽  
Christina Grimm ◽  
Valerio Zerbi

AbstractIn the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3308 ◽  
Author(s):  
Chiao-Yi Chiu ◽  
Ying-Chi Chen ◽  
Kuang-Wei Wu ◽  
Wen-Chien Hsu ◽  
Hong-Ping Lin ◽  
...  

Three-dimensional (3D) cell culture models have become powerful tools because they better simulate the in vivo pathophysiological microenvironment than traditional two-dimensional (2D) monolayer cultures. Tumor cells cultured in a 3D system as multicellular cancer aggregates (MCAs) recapitulate several critical in vivo characteristics that enable the study of biological functions and drug discovery. The microwell, in particular, has emerged as a revolutionary technology in the generation of MCAs as it provides geometrically defined microstructures for culturing size-controlled MCAs amenable for various downstream functional assays. This paper presents a simple and economical microwell fabrication methodology that can be conveniently incorporated into a conventional laboratory setting and used for the discovery of therapeutic interventions for liver cancer. The microwells were 400–700 µm in diameter, and hepatic MCAs (Huh-7 cells) were cultured in them for up to 5 days, over which time they grew to 250–520 µm with good viability and shape. The integrability of the microwell fabrication with a high-throughput workflow was demonstrated using a standard 96-well plate for proof-of-concept drug screening. The IC50 of doxorubicin was determined to be 9.3 µM under 2D conditions and 42.8 µM under 3D conditions. The application of photothermal treatment was demonstrated by optimizing concanavalin A-FITC conjugated silica-carbon hollow spheres (SCHSs) at a concentration of 500:200 µg/mL after a 2 h incubation to best bind with MCAs. Based on this concentration, which was appropriate for further photothermal treatment, the relative cell viability was assessed through exposure to a 3 W/cm2 near-infrared laser for 20 min. The relative fluorescence intensity showed an eight-fold reduction in cell viability, confirming the feasibility of using photothermal treatment as a potential therapeutic intervention. The proposed microwell integration is envisioned to serve as a simple in-house technique for the generation of MCAs useful for discovering therapeutic modalities for liver cancer treatment.


Author(s):  
Dimitre G. Ouzounov ◽  
Nicholas Horton ◽  
Tianyu Wang ◽  
Danielle Feng ◽  
Nozomi Nishimura ◽  
...  

Author(s):  
Dimitre G. Ouzounov ◽  
Tianyu Wang ◽  
Nicholas G. Horton ◽  
Jean C. Cruz Hernández ◽  
Danielle Feng ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Michael N Economo ◽  
Nathan G Clack ◽  
Luke D Lavis ◽  
Charles R Gerfen ◽  
Karel Svoboda ◽  
...  

The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.


2021 ◽  
Vol 27 (1) ◽  
pp. 99-107
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

Abstract Introduction: Due to enormous interests for laser in medicine and biology, optical properties characterization of different tissue have be affecting in development processes. In addition, the optical properties of biological tissues could be influenced by storage methods. Thus, optical properties of bovine white and grey tissues preserved by formalin have been characterized over a wide wavelength spectrum varied between 440 nm and 1000 nm. Materials and Methods: To that end, a single integrating sphere system was assembled for spectroscopic characterization and an inverse adding-doubling algorithm was used to retrieve optical coefficients, i.e. reduced scattering and absorption coefficients. Results: White matter has shown a strong scattering property in comparison to grey matter. On the other hand, the grey matter has absorbed light extensively. In comparison, the reduced scattering profile for both tissue types turned out to be consistent with prior works that characterized optical coefficients in vivo. On the contrary, absorption coefficient behavior has a different feature. Conclusion: Formalin could change the tissue’s optical properties because of the alteration of tissue’s structure and components. The absence of hemoglobin that seeps out due to the use of a formalin could reduce the absorption coefficient over the visible range. Both the water replacement by formalin could reduce the refractive index of a stored tissue and the absence of hemoglobin that scatters light over the presented wavelength range should diminish the reduced scattering coefficients over that wavelength range.


Author(s):  
Samuel A. Mihelic ◽  
William A. Sikora ◽  
Ahmed M. Hassan ◽  
Michael R. Williamson ◽  
Theresa A. Jones ◽  
...  

AbstractRecent advances in two-photon microscopy (2PM) have allowed large scale imaging and analysis of cortical blood vessel networks in living mice. However, extracting a network graph and vector representations for vessels remain bottlenecks in many applications. Vascular vectorization is algorithmically difficult because blood vessels have many shapes and sizes, the samples are often unevenly illuminated, and large image volumes are required to achieve good statistical power. State-of-the-art, three-dimensional, vascular vectorization approaches require a segmented/binary image, relying on manual or supervised-machine annotation. Therefore, voxel-by-voxel image segmentation is biased by the human annotator/trainer. Furthermore, segmented images oftentimes require remedial morphological filtering before skeletonization/vectorization. To address these limitations, we propose a vectorization method to extract vascular objects directly from unsegmented images. The Segmentation-Less, Automated, Vascular Vectorization (SLAVV) source code in MATLAB is openly available on GitHub. This novel method uses simple models of vascular anatomy, efficient linear filtering, and low-complexity vector extraction algorithms to remove the image segmentation requirement, replacing it with manual or automated vector classification. SLAVV is demonstrated on three in vivo 2PM image volumes of microvascular networks (capillaries, arterioles and venules) in the mouse cortex. Vectorization performance is proven robust to the choice of plasma- or endothelial-labeled contrast, and processing costs are shown to scale with input image volume. Fully-automated SLAVV performance is evaluated on various, simulated 2PM images based on the large, [1.4, 0.9, 0.6] mm input image, and performance metrics show greater robustness to image quality than an intensity-based thresholding approach.


Sign in / Sign up

Export Citation Format

Share Document