Deep Learning Powered Single Cell Biological Microlasers

Author(s):  
Zhen Qiao ◽  
Wen Sun ◽  
Randall Ang Jie ◽  
Yu-Cheng Chen
Keyword(s):  
Author(s):  
Yang Xu ◽  
Priyojit Das ◽  
Rachel Patton McCord

Abstract Motivation Deep learning approaches have empowered single-cell omics data analysis in many ways and generated new insights from complex cellular systems. As there is an increasing need for single cell omics data to be integrated across sources, types, and features of data, the challenges of integrating single-cell omics data are rising. Here, we present an unsupervised deep learning algorithm that learns discriminative representations for single-cell data via maximizing mutual information, SMILE (Single-cell Mutual Information Learning). Results Using a unique cell-pairing design, SMILE successfully integrates multi-source single-cell transcriptome data, removing batch effects and projecting similar cell types, even from different tissues, into the shared space. SMILE can also integrate data from two or more modalities, such as joint profiling technologies using single-cell ATAC-seq, RNA-seq, DNA methylation, Hi-C, and ChIP data. When paired cells are known, SMILE can integrate data with unmatched feature, such as genes for RNA-seq and genome wide peaks for ATAC-seq. Integrated representations learned from joint profiling technologies can then be used as a framework for comparing independent single source data. Supplementary information Supplementary data are available at Bioinformatics online. The source code of SMILE including analyses of key results in the study can be found at: https://github.com/rpmccordlab/SMILE.


2019 ◽  
Author(s):  
Suhas Srinivasan ◽  
Nathan T. Johnson ◽  
Dmitry Korkin

AbstractSingle-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained discovery of cellular subtypes and specific cell states. It routinely uses machine learning methods, such as feature learning, clustering, and classification, to assist in uncovering novel information from scRNA-seq data. However, current methods are not well suited to deal with the substantial amounts of noise that is created by the experiments or the variation that occurs due to differences in the cells of the same type. Here, we develop a new hybrid approach, Deep Unsupervised Single-cell Clustering (DUSC), that integrates feature generation based on a deep learning architecture with a model-based clustering algorithm, to find a compact and informative representation of the single-cell transcriptomic data generating robust clusters. We also include a technique to estimate an efficient number of latent features in the deep learning model. Our method outperforms both classical and state-of-the-art feature learning and clustering methods, approaching the accuracy of supervised learning. The method is freely available to the community and will hopefully facilitate our understanding of the cellular atlas of living organisms as well as provide the means to improve patient diagnostics and treatment.


2020 ◽  
Author(s):  
Turki Turki ◽  
Y-h. Taguchi

AbstractAnalyzing single-cell pancreatic data would play an important role in understanding various metabolic diseases and health conditions. Due to the sparsity and noise present in such single-cell gene expression data, analyzing various functions related to the inference of gene regulatory networks, derived from single-cell data, remains difficult, thereby posing a barrier to the deepening of understanding of cellular metabolism. Since recent studies have led to the reliable inference of single-cell gene regulatory networks (SCGRNs), the challenge of discriminating between SCGRNs has now arisen. By accurately discriminating between SCGRNs (e.g., distinguishing SCGRNs of healthy pancreas from those of T2D pancreas), biologists would be able to annotate, organize, visualize, and identify common patterns of SCGRNs for metabolic diseases. Such annotated SCGRNs could play an important role in speeding up the process of building large data repositories. In this study, we aimed to contribute to the development of a novel deep learning (DL) application. First, we generated a dataset consisting of 224 SCGRNs belonging to both T2D and healthy pancreas and made it freely available. Next, we chose seven DL architectures, including VGG16, VGG19, Xception, ResNet50, ResNet101, DenseNet121, and DenseNet169, trained each of them on the dataset, and checked prediction based on a test set. We evaluated the DL architectures on an HP workstation platform with a single NVIDIA GeForce RTX 2080Ti GPU. Experimental results on the whole dataset, using several performance measures, demonstrated the superiority of VGG19 DL model in the automatic classification of SCGRNs, derived from the single-cell pancreatic data.


2020 ◽  
Author(s):  
Quentin Juppet ◽  
Fabio De Martino ◽  
Martin Weigert ◽  
Olivier Burri ◽  
Michaël Unser ◽  
...  

AbstractPatient-Derived Xenografts (PDXs) are the preclinical models which best recapitulate inter- and intra-patient complexity of human breast malignancies, and are also emerging as useful tools to study the normal breast epithelium. However, data analysis generated with such models is often confounded by the presence of host cells and can give rise to data misinterpretation. For instance, it is important to discriminate between xenografted and host cells in histological sections prior to performing immunostainings. We developed Single Cell Classifier (SCC), a data-driven deep learning-based computational tool that provides an innovative approach for automated cell species discrimination based on a multi-step process entailing nuclei segmentation and single cell classification. We show that human and murine cells contextual features, more than cell-intrinsic ones, can be exploited to discriminate between cell species in both normal and malignant tissues, yielding up to 96% classification accuracy. SCC will facilitate the interpretation of H&E stained histological sections of xenografted human-in-mouse tissues and it is open to new in-house built models for further applications. SCC is released as an open-source plugin in ImageJ/Fiji available at the following link: https://github.com/Biomedical-Imaging-Group/SingleCellClassifier.Author summaryBreast cancer is the most commonly diagnosed tumor in women worldwide and its incidence in the population is increasing over time. Because our understanding of such disease has been hampered by the lack of adequate human preclinical model, efforts have been made in order to develop better approaches to model the human complexity. Recent advances in this regard were achieved with Patient-Derived Xenografts (PDXs), which entail the implantation of human-derived specimens to recipient immunosuppressed mice and are, thus far, the preclinical system best recapitulating the heterogeneity of both normal and malignant human tissues. However, histological analyses of the resulting tissues are usually confounded by the presence of cells of different species. To circumvent this hurdle and to facilitate the discrimination of human and murine cells in xenografted samples, we developed Single Cell Classifier (SCC), a deep learning-based open-source software, available as a plugin in ImageJ/Fiji, performing automated species classification of individual cells in H&E stained sections. We show that SCC can reach up to 96% classification accuracy to classify cells of different species mainly leveraging on their contextual features in both normal and tumor PDXs. SCC will improve and automate histological analyses of human-in-mouse xenografts and is open to new in-house built models for further classification tasks and applications in image analysis.


2019 ◽  
Vol 1 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Tian Tian ◽  
Ji Wan ◽  
Qi Song ◽  
Zhi Wei

2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Christof Angermueller ◽  
Heather J. Lee ◽  
Wolf Reik ◽  
Oliver Stegle

2016 ◽  
Vol 21 (9) ◽  
pp. 998-1003 ◽  
Author(s):  
Oliver Dürr ◽  
Beate Sick

Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening–based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.


Author(s):  
Justin Lakkis ◽  
David Wang ◽  
Yuanchao Zhang ◽  
Gang Hu ◽  
Kui Wang ◽  
...  

AbstractRecent development of single-cell RNA-seq (scRNA-seq) technologies has led to enormous biological discoveries. As the scale of scRNA-seq studies increases, a major challenge in analysis is batch effect, which is inevitable in studies involving human tissues. Most existing methods remove batch effect in a low-dimensional embedding space. Although useful for clustering, batch effect is still present in the gene expression space, leaving downstream gene-level analysis susceptible to batch effect. Recent studies have shown that batch effect correction in the gene expression space is much harder than in the embedding space. Popular methods such as Seurat3.0 rely on the mutual nearest neighbor (MNN) approach to remove batch effect in the gene expression space, but MNN can only analyze two batches at a time and it becomes computationally infeasible when the number of batches is large. Here we present CarDEC, a joint deep learning model that simultaneously clusters and denoises scRNA-seq data, while correcting batch effect both in the embedding and the gene expression space. Comprehensive evaluations spanning different species and tissues showed that CarDEC consistently outperforms scVI, DCA, and MNN. With CarDEC denoising, those non-highly variable genes offer as much signal for clustering as the highly variable genes, suggesting that CarDEC substantially boosted information content in scRNA-seq. We also showed that trajectory analysis using CarDEC’s denoised and batch corrected expression as input revealed marker genes and transcription factors that are otherwise obscured in the presence of batch effect. CarDEC is computationally fast, making it a desirable tool for large-scale scRNA-seq studies.


Sign in / Sign up

Export Citation Format

Share Document