Compact on-chip photonic crystal spectrometers for integrated sensing applications

2006 ◽  
Author(s):  
Babak Momeni ◽  
Ali A. Eftekhar ◽  
Majid Badieirostami ◽  
Jiandong Huang ◽  
Murtaza Askari ◽  
...  
2020 ◽  
Vol 10 (20) ◽  
pp. 7080
Author(s):  
Ji Xia ◽  
Qifeng Qiao ◽  
Guangcan Zhou ◽  
Fook Siong Chau ◽  
Guangya Zhou

A new class of hybrid systems that couple optical and mechanical nanoscale devices is under development. According to their interaction concepts, two groups of opto-mechanical systems are summarized as mechanically tunable and radiation pressure-driven optical resonators. On account of their high-quality factors and small mode volumes as well as good on-chip integrability with waveguides/circuits, photonic crystal (PhC) cavities have attracted great attention in sensing applications. Benefitting from the opto-mechanical interaction, a PhC cavity integrated opto-mechanical system provides an attractive platform for ultrasensitive sensors to detect displacement, mass, force, and acceleration. In this review, we introduce basic physical concepts of opto-mechanical PhC system and describe typical experimental systems for sensing applications. Opto-mechanical interaction-based PhC cavities offer unprecedented opportunities to develop lab-on-a-chip devices and witness a promising prospect to further manipulate light propagation in the nanophotonics.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 541 ◽  
Author(s):  
Qifeng Qiao ◽  
Ji Xia ◽  
Chengkuo Lee ◽  
Guangya Zhou

In recent years, there has been growing interest in optical sensors based on microcavities due to their advantages of size reduction and enhanced sensing capability. In this paper, we aim to give a comprehensive review of the field of photonic crystal nanobeam cavity-based sensors. The sensing principles and development of applications, such as refractive index sensing, nanoparticle sensing, optomechanical sensing, and temperature sensing, are summarized and highlighted. From the studies reported, it is demonstrated that photonic crystal nanobeam cavities, which provide excellent light confinement capability, ultra-small size, flexible on-chip design, and easy integration, offer promising platforms for a range of sensing applications.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 864
Author(s):  
Reyhaneh Jannesari ◽  
Banafsheh Abasahl ◽  
Thomas Grille ◽  
Bernhard Jakoby

In this paper, a hybrid optical guiding system based on low group velocity offered by photonic crystal (PhC) waveguides and vertical confinement as well as high field enhancement of. Surface lasmon polaritons (SPP) is proposed. We show that for efficient sensing, conventional two-dimensional PhC waveguides with finite height require a high aspect ratio in the order of 30 in order to efficiently confine the guiding mode. The fabrication of devices with such a high aspect ratio is considered too challenging and inefficient for mass production. By combining a PhC waveguide and SPPs, the proposed system efficiently confines the optical mode vertically while benefiting from the lateral confinement enabled by PhC structures. As a result, the required aspect ratio drops to about 4 making the fabrication in large scale feasible. This design provides strong light-matter interaction within small dimensions, which is beneficial for miniaturizing on-chip photonic sensors.


2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


2006 ◽  
Vol 14 (18) ◽  
pp. 8403 ◽  
Author(s):  
Cristiano M. B. Cordeiro ◽  
Eliane M. dos Santos ◽  
C. H. Brito Cruz ◽  
Christiano J. de Matos ◽  
Daniel S. Ferreiira

2011 ◽  
Vol 36 (6) ◽  
pp. 984 ◽  
Author(s):  
Wei-Cheng Lai ◽  
Swapnajit Chakravarty ◽  
Xiaolong Wang ◽  
Cheyun Lin ◽  
Ray T. Chen

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4263 ◽  
Author(s):  
José Algorri ◽  
Dimitrios Zografopoulos ◽  
Alberto Tapetado ◽  
David Poudereux ◽  
José Sánchez-Pena

Photonic crystal fibers (PCFs) are a special class of optical fibers with a periodic arrangement of microstructured holes located in the fiber’s cladding. Light confinement is achieved by means of either index-guiding, or the photonic bandgap effect in a low-index core. Ever since PCFs were first demonstrated in 1995, their special characteristics, such as potentially high birefringence, very small or high nonlinearity, low propagation losses, and controllable dispersion parameters, have rendered them unique for many applications, such as sensors, high-power pulse transmission, and biomedical studies. When the holes of PCFs are filled with solids, liquids or gases, unprecedented opportunities for applications emerge. These include, but are not limited in, supercontinuum generation, propulsion of atoms through a hollow fiber core, fiber-loaded Bose–Einstein condensates, as well as enhanced sensing and measurement devices. For this reason, infiltrated PCF have been the focus of intensive research in recent years. In this review, the fundamentals and fabrication of PCF infiltrated with different materials are discussed. In addition, potential applications of infiltrated PCF sensors are reviewed, identifying the challenges and limitations to scale up and commercialize this novel technology.


2017 ◽  
Vol 25 (26) ◽  
pp. 32919 ◽  
Author(s):  
Hyunho Jung ◽  
Myungjae Lee ◽  
Changhyun Han ◽  
Yeonsang Park ◽  
Kyung-Sang Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document