scholarly journals Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses

2018 ◽  
Vol 35 (11) ◽  
pp. 2822 ◽  
Author(s):  
Sarang Yeola ◽  
Donghoon Kuk ◽  
Ki-Yong Kim
2013 ◽  
Vol 205-206 ◽  
pp. 358-363 ◽  
Author(s):  
Philipp Saring ◽  
Anna Lena Baumann ◽  
Stefan Kontermann ◽  
Wolfgang Schade ◽  
Michael Seibt

This paper investigates the influence of different number of laser pulses on contact behavior and conductivity of the surface layer of femtosecond laser microstructured, sulfur-doped silicon. Single shot laser processed silicon (Pink Silicon) is characterized by low surface roughness, whereas five shot laser processed silicon (Grey Silicon) has an elevated sulfur content with a surface roughness low enough to maintain good contacting. To laterally confine the laser induced pn-junction part of the Grey Silicon sample surface is etched off. The etching depth is confirmed to be sufficient to completely remove the active n-type sulfur layer. While Pink Silicon shows little or no lateral conductivity within the laser processed layer, Grey Silicon offers acceptable conductivity, just as expected by the fact of having incorporated a higher sulfur dopant content. Recombination dominates the irradiated regions of Pink Silicon and suppresses excess charge carrier collection. Grey Silicon, while showing sufficient lateral conductivity, still shows regions of lower conductivity, most likely dominated by the laser irradiation-induced formation of dislocations. According to our results, the optimum laser pulse number for electrical and structural properties is expected to be in the range between one and five laser pulses.


2000 ◽  
Vol 6 (2) ◽  
pp. 143-152 ◽  
Author(s):  
R. Heinicke ◽  
C. Grun ◽  
J. Grotemeyer

Measurements of a single shot femtosecond laser pump-probe technique on substituted benzalacetones are reported. The technique is based on counter propagating femtosecond laser pulses in a supersonic beam of low density of sample molecules and simultaneous probe detection by ion or fragment ion formation through a reflectron time-of-flight mass spectrometer. It will be shown that the range of the pump-probe delays covers the time span between 100 fs and 10 ps depending on the pulse width of the laser used and the stability of the voltages of the mass spectrometer. The application of this technique to medium-sized organic molecules reveals some insight into the electron transfer process during ionisation through a 1 + 1 multi-photon absorption procedure. Furthermore it is demonstrated that this technique is also applicable to the investigation of ultra-fast isomerisation and fragmentation processes.


2004 ◽  
Vol 43 (3) ◽  
pp. 993-996 ◽  
Author(s):  
Katsutoshi Takatoi ◽  
Akira Suda ◽  
Yu Oishi ◽  
Pengqian Wang ◽  
Keigo Nagasaka ◽  
...  

2009 ◽  
Vol 15 (4) ◽  
pp. 314-322 ◽  
Author(s):  
Archie Howie

AbstractA variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document