Large-angle beam deflection of a laser-cooled sodium beam

1989 ◽  
Vol 6 (11) ◽  
pp. 2149 ◽  
Author(s):  
J. Nellessen ◽  
J. H. Müller ◽  
K. Sengstock ◽  
W. Ertmer
2020 ◽  
Vol 53 (24) ◽  
pp. 245101 ◽  
Author(s):  
Xipu Dong ◽  
Jierong Cheng ◽  
Fei Fan ◽  
Ziyang Zhang ◽  
Yan Liu ◽  
...  
Keyword(s):  

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Yun-Han Lee ◽  
Guanjun Tan ◽  
Tao Zhan ◽  
Yishi Weng ◽  
Guigeng Liu ◽  
...  

AbstractIn this review paper,we report recent progress on Pancharatnam-Berry (PB) phase optical elements, such as lens, grating, and deflector. PB lenses exhibit a fast switching time between two or more focal lengths with large diopter change and aperture size, which is particularly attractive for addressing the accommodation mismatch in head-mounted display devices. On the other hand, PB gratings and deflectors offer a large-angle beam deflection with wide acceptance cone and high efficiency, as compared to conventional volume gratings. Such merits provide great advantages for waveguide-coupling augmented reality headsets. Moreover, the thickness of PB optical elements is only a few micrometers, thus they can be conveniently integrated into modern wearable display systems.


2021 ◽  
Vol 41 (3) ◽  
pp. 0305001
Author(s):  
陈磊 Chen Lei ◽  
严金华 Yan Jinhua ◽  
郭焕祥 Guo Huanxiang ◽  
张航 Zhang Hang

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Pengcheng Wan ◽  
Yinghui Ren ◽  
Qianjing Wang ◽  
Di Huang ◽  
Ling Zhou ◽  
...  

AbstractWe theoretically demonstrate a Dirac fermion metagrating which is an artificially engineered material in graphene. Although its physics mechanism is different from that of optical metagrating, both of them can deliver waves to one desired diffraction order. Here we design the metagrating as a linear array of bias-tunable quantum dots to engineer electron beams to travel along the -1st-order transmission direction with unity efficiency. Equivalently, electron waves are deflected by an arbitrary large-angle ranging from 90° to 180° by controlling the bias. The propagation direction changes abruptly without the necessity of a large transition distance. This effect is irrelevant to complete band gaps and thus the advantages of graphene with high mobility are not destroyed. This can be attributed to the whispering-gallery modes, which evolve with the angle of incidence to completely suppress the other diffraction orders supported by the metagrating and produce unity-efficiency beam deflection by enhancing the -1st transmitted diffraction order. The concept of Dirac fermion metagratings opens up a new paradigm in electron beam steering and could be applied to achieve two-dimensional electronic holography.


Author(s):  
T. Yanaka ◽  
K. Shirota

It is significant to note field aberrations (chromatic field aberration, coma, astigmatism and blurring due to curvature of field, defined by Glaser's aberration theory relative to the Blenden Freien System) of the objective lens in connection with the following three points of view; field aberrations increase as the resolution of the axial point improves by increasing the lens excitation (k2) and decreasing the half width value (d) of the axial lens field distribution; when one or all of the imaging lenses have axial imperfections such as beam deflection in image space by the asymmetrical magnetic leakage flux, the apparent axial point has field aberrations which prevent the theoretical resolution limit from being obtained.


Author(s):  
P. Hagemann

The use of computers in the analytical electron microscopy today shows three different trends (1) automated image analysis with dedicated computer systems, (2) instrument control by microprocessors and (3) data acquisition and processing e.g. X-ray or EEL Spectroscopy.While image analysis in the T.E.M. usually needs a television chain to get a sequential transmission suitable as computer input, the STEM system already has this necessary facility. For the EM400T-STEM system therefore an interface was developed, that allows external control of the beam deflection in TEM as well as the control of the STEM probe and video signal/beam brightness on the STEM screen.The interface sends and receives analogue signals so that the transmission rate is determined by the convertors in the actual computer periphery.


Author(s):  
Eckhard Quandt ◽  
Stephan laBarré ◽  
Andreas Hartmann ◽  
Heinz Niedrig

Due to the development of semiconductor detectors with high spatial resolution -- e.g. charge coupled devices (CCDs) or photodiode arrays (PDAs) -- the parallel detection of electron energy loss spectra (EELS) has become an important alternative to serial registration. Using parallel detection for recording of energy spectroscopic large angle convergent beam patterns (LACBPs) special selected scattering vectors and small detection apertures lead to very low intensities. Therefore the very sensitive direct irradiation of a cooled linear PDA instead of the common combination of scintillator, fibre optic, and semiconductor has been investigated. In order to obtain a sufficient energy resolution the spectra are optionally magnified by a quadrupole-lens system.The detector used is a Hamamatsu S2304-512Q linear PDA with 512 diodes and removed quartz-glas window. The sensor size is 13 μm ∗ 2.5 mm with an element spacing of 25 μm. Along with the dispersion of 3.5 μm/eV at 40 keV the maximum energy resolution is limited to about 7 eV, so that a magnification system should be attached for experiments requiring a better resolution.


Author(s):  
Philip D. Hren

The pattern of bend contours which appear in the TEM image of a bent or curled sample indicates the shape into which the specimen is bent. Several authors have characterized the shape of their bent foils by this method, most recently I. Bolotov, as well as G. Möllenstedt and O. Rang in the early 1950’s. However, the samples they considered were viewed at orientations away from a zone axis, or at zone axes of low symmetry, so that dynamical interactions between the bend contours did not occur. Their calculations were thus based on purely geometric arguments. In this paper bend contours are used to measure deflections of a single-crystal silicon membrane at the (111) zone axis, where there are strong dynamical effects. Features in the bend contour pattern are identified and associated with a particular angle of bending of the membrane by reference to large-angle convergent-beam electron diffraction (LACBED) patterns.


Author(s):  
J.M.K. Wiezorek ◽  
H.L. Fraser

Conventional methods of convergent beam electron diffraction (CBED) use a fully converged probe focused on the specimen in the object plane resulting in the formation of a CBED pattern in the diffraction plane. Large angle CBED (LACBED) uses a converged but defocused probe resulting in the formation of ‘shadow images’ of the illuminated sample area in the diffraction plane. Hence, low-spatial resolution image information and high-angular resolution diffraction information are superimposed in LACBED patterns which enables the simultaneous observation of crystal defects and their effect on the diffraction pattern. In recent years LACBED has been used successfully for the investigation of a variety of crystal defects, such as stacking faults, interfaces and dislocations. In this paper the contrast from coherent precipitates and decorated dislocations in LACBED patterns has been investigated. Computer simulated LACBED contrast from decorated dislocations and coherent precipitates is compared with experimental observations.


Author(s):  
J.-Y. Wang ◽  
Y. Zhu ◽  
A.H. King ◽  
M. Suenaga

One outstanding problem in YBa2Cu3O7−δ superconductors is the weak link behavior of grain boundaries, especially boundaries with a large-angle misorientation. Increasing evidence shows that lattice mismatch at the boundaries contributes to variations in oxygen and cation concentrations at the boundaries, while the strain field surrounding a dislocation core at the boundary suppresses the superconducting order parameter. Thus, understanding the structure of the grain boundary and the grain boundary dislocations (which describe the topology of the boundary) is essential in elucidating the superconducting characteristics of boundaries. Here, we discuss our study of the structure of a Σ5 grain boundary by transmission electron microscopy. The characterization of the structure of the boundary was based on the coincidence site lattice (CSL) model.Fig.l shows two-beam images of the grain boundary near the projection. An array of grain boundary dislocations, with spacings of about 30nm, is clearly visible in Fig. 1(a), but invisible in Fig. 1(b).


Sign in / Sign up

Export Citation Format

Share Document