Stability investigation of the Pix2Pix conditional generative adversarial network with respect to input semantic image labeling data distortion

2021 ◽  
Vol 88 (11) ◽  
pp. 647
Author(s):  
V. O. Yachnaya ◽  
V. R. Lutsiv
2019 ◽  
Vol 11 (8) ◽  
pp. 917 ◽  
Author(s):  
Xuran Pan ◽  
Fan Yang ◽  
Lianru Gao ◽  
Zhengchao Chen ◽  
Bing Zhang ◽  
...  

Segmentation of high-resolution remote sensing images is an important challenge with wide practical applications. The increasing spatial resolution provides fine details for image segmentation but also incurs segmentation ambiguities. In this paper, we propose a generative adversarial network with spatial and channel attention mechanisms (GAN-SCA) for the robust segmentation of buildings in remote sensing images. The segmentation network (generator) of the proposed framework is composed of the well-known semantic segmentation architecture (U-Net) and the spatial and channel attention mechanisms (SCA). The adoption of SCA enables the segmentation network to selectively enhance more useful features in specific positions and channels and enables improved results closer to the ground truth. The discriminator is an adversarial network with channel attention mechanisms that can properly discriminate the outputs of the generator and the ground truth maps. The segmentation network and adversarial network are trained in an alternating fashion on the Inria aerial image labeling dataset and Massachusetts buildings dataset. Experimental results show that the proposed GAN-SCA achieves a higher score (the overall accuracy and intersection over the union of Inria aerial image labeling dataset are 96.61% and 77.75%, respectively, and the F1-measure of the Massachusetts buildings dataset is 96.36%) and outperforms several state-of-the-art approaches.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2019 ◽  
Vol 52 (21) ◽  
pp. 291-296 ◽  
Author(s):  
Minsung Sung ◽  
Jason Kim ◽  
Juhwan Kim ◽  
Son-Cheol Yu

Sign in / Sign up

Export Citation Format

Share Document