Structural characteristics of internal microcavities produced in optical fiber via the fuse effect

2021 ◽  
Vol 88 (11) ◽  
pp. 672
Author(s):  
Yu. A. Konin ◽  
V. A. Scherbakova ◽  
M. I. Bulatov ◽  
N. A. Malkov ◽  
A. S. Lucenko ◽  
...  
2014 ◽  
Vol 624 ◽  
pp. 712-714
Author(s):  
Pei Yun Ao

According to the structural characteristics of optical fiber connector Ceramic insert core, this article analyzed the structure technology of it. Based on Mold wizard module and Pro/Moldsign module. We conducted injection mold design of optical fiber connector ceramic insert core; Put forward the flow characteristics of zirconia powder injection feeding and binder, lubricants and other additive formulation.


2017 ◽  
Vol 14 (4) ◽  
pp. 337-341
Author(s):  
Weiwei Pan ◽  
Dongsheng Wang

Purpose Flow measurement plays an important role in modern industrial production. Flow measurement methods based on optical fiber systems have become a main research focus. Design/methodology/approach Applying flow measurement theory and the structural characteristics of optical fiber, flow measurement of paste can be achieved through a combined laser Doppler and optical fiber sensing system based on the principle of optical fiber grating sensors and flow sensors. The system is developed to include light selection, photoelectric detection, a voltage amplifier circuit and a signal filtering circuit. Findings The system is shown, through a comparative experiment, to be of higher accuracy than the traditional ultrasonic method. Originality/value A new method for measuring the paste flow is presented, which is based on the principle of optical fiber Doppler. The method has the advantages of convenient installation, high accuracy and low cost. Experiments show that the method is feasible.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.


Author(s):  
G. M. Michal

Several TEM investigations have attempted to correlate the structural characteristics to the unusual shape memory effect in NiTi, the consensus being the essence of the memory effect is ostensible manifest in the structure of NiTi transforming martensitic- ally from a B2 ordered lattice to a low temperature monoclinic phase. Commensurate with the low symmetry of the martensite phase, many variants may form from the B2 lattice explaining the very complex transformed microstructure. The microstructure may also be complicated by the enhanced formation of oxide or hydride phases and precipitation of intermetallic compounds by electron beam exposure. Variants are typically found in selfaccommodation groups with members of a group internally twinned and the twins themselves are often observed to be internally twinned. Often the most salient feature of a group of variants is their close clustering around a given orientation. Analysis of such orientation relationships may be a key to determining the nature of the reaction path that gives the transformation its apparently perfect reversibility.


Author(s):  
Christopher Viney

Light microscopy is a convenient technique for characterizing molecular order in fluid liquid crystalline materials. Microstructures can usually be observed under the actual conditions that promote the formation of liquid crystalline phases, whether or not a solvent is required, and at temperatures that can range from the boiling point of nitrogen to 600°C. It is relatively easy to produce specimens that are sufficiently thin and flat, simply by confining a droplet between glass cover slides. Specimens do not need to be conducting, and they do not have to be maintained in a vacuum. Drybox or other controlled environmental conditions can be maintained in a sealed chamber equipped with transparent windows; some heating/ freezing stages can be used for this purpose. It is relatively easy to construct a modified stage so that the generation and relaxation of global molecular order can be observed while specimens are being sheared, simulating flow conditions that exist during processing. Also, light only rarely affects the chemical composition or molecular weight distribution of the sample. Because little or no processing is required after collecting the sample, one can be confident that biologically derived materials will reveal many of their in vivo structural characteristics, even though microscopy is performed in vitro.


1998 ◽  
Vol 17 (1) ◽  
pp. 531-539 ◽  
Author(s):  
Akiko Kondow ◽  
Shin-ichi Yokobori ◽  
Takuya Ueda ◽  
Kimitsuna Watanabe

1981 ◽  
Vol 64 (10) ◽  
pp. 95-103
Author(s):  
Kiyonobu Kusano ◽  
Shigeo Nishida

Sign in / Sign up

Export Citation Format

Share Document