scholarly journals Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape

2007 ◽  
Vol 15 (22) ◽  
pp. 14629 ◽  
Author(s):  
Arvind Battula ◽  
Yalin Lu ◽  
R. J. Knize ◽  
Kitt Reinhardt ◽  
Shaochen Chen
Keyword(s):  
2019 ◽  
Vol 12 (12) ◽  
pp. 125002 ◽  
Author(s):  
Suxia Xie ◽  
Changzhong Xie ◽  
Song Xie ◽  
Jie Zhan ◽  
Zhijian Li ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 180
Author(s):  
Chi-Feng Chen ◽  
Chih-Hsiung Shen ◽  
Yun-Ying Yeh

A thermopile device with sub-wavelength hole array (SHA) is numerically and experimentally investigated. The infrared absorbance (IRA) effect of SHAs in active area of the thermopile device is clearly analyzed by the finite-difference time-domain (FDTD) method. The prototypes are manufactured by the 0.35 μm 2P4M complementary metal-oxide-semiconductor micro-electro-mechanical-systems (CMOS-MEMS) process in Taiwan semiconductor manufacturing company (TSMC). The measurement results of those prototypes are similar to their simulation results. Based on the simulation technology, more sub-wavelength hole structural effects for IRA of such thermopile device are discussed. It is found from simulation results that the results of SHAs arranged in a hexagonal shape are significantly better than the results of SHAs arranged in a square and the infrared absorption efficiencies (IAEs) of specific asymmetric rectangle and elliptical hole structure arrays are higher than the relatively symmetric square and circular hole structure arrays. The overall best results are respectively up to 3.532 and 3.573 times higher than that without sub-wavelength structure at the target temperature of 60 °C when the minimum structure line width limit of the process is ignored. Obviously, the IRA can be enhanced when the SHAs are considered in active area of the thermopile device and the structural optimization of the SHAs is absolutely necessary.


1999 ◽  
Author(s):  
Ryosuke Nakamura ◽  
Shuichi Shoji ◽  
Akira Yotsumoto

Abstract An integrated mixing/reaction micro flow cell which consists of a sample/reagent mixing channel, a visible port and a reaction chamber was designed, fabricated and tested. A micro cone hole array of macro porous Si was employed for reagent injection part. A visible light transparent PDMS slab was used as the visible port. A Ti-Pt thin film heater and a p-n junction diode temperature sensor were integrated on the reaction chamber to realize feedback temperature control. Uniform mixing and precise temperature control were realized by the fabricated micro flow cell. The striate and simple microchannel structure of the micro flow cell is suitable for multiplexed micro reactor for chemical and biochemical applications.


2010 ◽  
Vol 97 (26) ◽  
pp. 261112 ◽  
Author(s):  
J. W. Lee ◽  
T. H. Park ◽  
Peter Nordlander ◽  
Daniel M. Mittleman
Keyword(s):  

2006 ◽  
Author(s):  
Fu Min Huang ◽  
Yifang Chen ◽  
F. Javier Garcia de Abajo ◽  
Nikolay Zheludev
Keyword(s):  

2021 ◽  
Vol 29 (5) ◽  
pp. 7767
Author(s):  
Ping Zhang ◽  
Deqiang Zhao ◽  
Xiaosong Wang ◽  
Shaomeng Wang ◽  
Yusuke Sakai ◽  
...  

2016 ◽  
Vol 7 (22) ◽  
pp. 4648-4654 ◽  
Author(s):  
Hai Wang ◽  
Hai-Yu Wang ◽  
Andrea Toma ◽  
Taka-aki Yano ◽  
Qi-Dai Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document