scholarly journals Accurate evaluation of size and refractive index for spherical objects in quantitative phase imaging

2018 ◽  
Vol 26 (8) ◽  
pp. 10729 ◽  
Author(s):  
Paul Müller ◽  
Mirjam Schürmann ◽  
Salvatore Girardo ◽  
Gheorghe Cojoc ◽  
Jochen Guck
2017 ◽  
Author(s):  
Masanori Takabayashi ◽  
Hassaan Majeed ◽  
Andre Kajdacsy-Balla ◽  
Gabriel Popescu

AbstractTissue refractive index provides important information about morphology at the nanoscale. Since the malignant transformation involves both intra- and inter-cellular changes in the refractive index map, the tissue disorder measurement can be used to extract important diagnosis information. Quantitative phase imaging (QPI) provides a practical means of extracting this information as it maps the optical path-length difference (OPD) across a tissue sample with sub-wavelength sensitivity. In this work, we employ QPI to compare the tissue disorder strength between benign and malignant breast tissue histology samples. Our results show that disease progression is marked by a significant increase in the disorder strength. Since our imaging system can be added as an upgrading module to an existing microscope, we anticipate that it can be integrated easily in the pathology work flow.


2017 ◽  
Vol 25 (2) ◽  
pp. 1573 ◽  
Author(s):  
Mingguang Shan ◽  
Mikhail E. Kandel ◽  
Gabriel Popescu

2019 ◽  
Author(s):  
Geon Kim ◽  
Daewoong Ahn ◽  
Minhee Kang ◽  
YoungJu Jo ◽  
Donghun Ryu ◽  
...  

ABSTRACTFor appropriate treatments of infectious diseases, rapid identification of the pathogens is crucial. Here, we developed a rapid and label-free method for identifying common bacterial pathogens as individual bacteria by using three-dimensional quantitative phase imaging and deep learning. We achieved 95% accuracy in classifying 19 bacterial species by exploiting the rich information in three-dimensional refractive index tomograms with a convolutional neural network classifier. Extensive analysis of the features extracted by the trained classifier was carried out, which supported that our classifier is capable of learning species-dependent characteristics. We also confirmed that utilizing three-dimensional refractive index tomograms was crucial for identification ability compared to two-dimensional imaging. This method, which does not require time-consuming culture, shows high feasibility for diagnosing patients with infectious diseases who would benefit from immediate and adequate antibiotic treatment.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Han Sang Park ◽  
Will J. Eldridge ◽  
Wen-Hsuan Yang ◽  
Michael Crose ◽  
Silvia Ceballos ◽  
...  

AbstractChanges in the deformability of red blood cells can reveal a range of pathologies. For example, cells which have been stored for transfusion are known to exhibit progressively impaired deformability. Thus, this aspect of red blood cells has been characterized previously using a range of techniques. In this paper, we show a novel approach for examining the biophysical response of the cells with quantitative phase imaging. Specifically, optical volume changes are observed as the cells transit restrictive channels of a microfluidic chip in a high refractive index medium. The optical volume changes indicate an increase of cell’s internal density, ostensibly due to water displacement. Here, we characterize these changes over time for red blood cells from two subjects. By storage day 29, a significant decrease in the magnitude of optical volume change in response to mechanical stress was witnessed. The exchange of water with the environment due to mechanical stress is seen to modulate with storage time, suggesting a potential means for studying cell storage.


Sign in / Sign up

Export Citation Format

Share Document