Proactive Dynamic Network Slicing with Deep Learning Based Short-Term Traffic Prediction for 5G Transport Network

Author(s):  
Qize Guo ◽  
Rentao Gu ◽  
Zihao Wang ◽  
Tianyi Zhao ◽  
Yuefeng Ji ◽  
...  
2020 ◽  
Vol 21 (3) ◽  
pp. 1332-1342 ◽  
Author(s):  
Yuanli Gu ◽  
Wenqi Lu ◽  
Xinyue Xu ◽  
Lingqiao Qin ◽  
Zhuangzhuang Shao ◽  
...  

Author(s):  
Rongzhou Huang ◽  
Chuyin Huang ◽  
Yubao Liu ◽  
Genan Dai ◽  
Weiyang Kong

Traffic prediction is a classical spatial-temporal prediction problem with many real-world applications such as intelligent route planning, dynamic traffic management, and smart location-based applications. Due to the high nonlinearity and complexity of traffic data, deep learning approaches have attracted much interest in recent years. However, few methods are satisfied with both long and short-term prediction tasks. Target at the shortcomings of existing studies, in this paper, we propose a novel deep learning framework called Long Short-term Graph Convolutional Networks (LSGCN) to tackle both traffic prediction tasks. In our framework, we propose a new graph attention network called cosAtt, and integrate both cosAtt and graph convolution networks (GCN) into a spatial gated block. By the spatial gated block and gated linear units convolution (GLU), LSGCN can efficiently capture complex spatial-temporal features and obtain stable prediction results. Experiments with three real-world traffic datasets verify the effectiveness of LSGCN.


Author(s):  
А.С. БОРОДИН ◽  
А.Р. АБДЕЛЛАХ ◽  
А.Е. КУЧЕРЯВЫЙ

Использование искусственного интеллекта в сетях связи пятого (5G) и последующих поколений дает новые возможности, в том числе для прогнозирования трафика. Это особенно важно для трафика интернета вещей (IoT - Internet of Things), поскольку число устройств IoT очень велико. Предлагается для прогнозирования трафика IoT применить глубокое обучение с использованием нейронной сети долговременной краткосрочной памяти LSTM (Long Short-Term Memory). The use of artificial intelligence in communication networks of the 5G and subsequent generations provides completely new opportunities, including for traffic forecasting. This is especially important for IoT traffic because the number of IoT devices is very large. The article proposes to apply deep learning to predict IoT traffic using a neural network of longterm short-term memory (LSTM).


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Ming-Xia Huang ◽  
Wen-Tao Li ◽  
Lu Wang ◽  
Shan-Shan Fan

2022 ◽  
Vol 22 (1) ◽  
pp. 1-18
Author(s):  
Chen Chen ◽  
Lei Liu ◽  
Shaohua Wan ◽  
Xiaozhe Hui ◽  
Qingqi Pei

As a key use case of Industry 4.0 and the Smart City, the Internet of Vehicles (IoV) provides an efficient way for city managers to regulate the traffic flow, improve the commuting performance, reduce the transportation facility cost, alleviate the traffic jam, and so on. In fact, the significant development of Internet of Vehicles has boosted the emergence of a variety of Industry 4.0 applications, e.g., smart logistics, intelligent transforation, and autonomous driving. The prerequisite of deploying these applications is the design of efficient data dissemination schemes by which the interactive information could be effectively exchanged. However, in Internet of Vehicles, an efficient data scheme should adapt to the high node movement and frequent network changing. To achieve the objective, the ability to predict short-term traffic is crucial for making optimal policy in advance. In this article, we propose a novel data dissemination scheme by exploring short-term traffic prediction for Industry 4.0 applications enabled in Internet of Vehicles. First, we present a three-tier network architecture with the aim to simply network management and reduce communication overheads. To capture dynamic network changing, a deep learning network is employed by the controller in this architecture to predict short-term traffic with the availability of enormous traffic data. Based on the traffic prediction, each road segment can be assigned a weight through the built two-dimensional delay model, enabling the controller to make routing decisions in advance. With the global weight information, the controller leverages the ant colony optimization algorithm to find the optimal routing path with minimum delay. Extensive simulations are carried out to demonstrate the accuracy of the traffic prediction model and the superiority of the proposed data dissemination scheme for Industry 4.0 applications.


2021 ◽  
Vol 11 (13) ◽  
pp. 6219
Author(s):  
Samier Barguil ◽  
Victor Lopez Alvarez ◽  
Luis Miguel Contreras Murillo ◽  
Oscar Gonzalez de Dios ◽  
Alejandro Alcala Alvarez ◽  
...  

Network operators have been dealing with the necessity of a dynamic network resources allocation to provide a new generation of customer-tailored applications. In that sense, Telecom providers have to migrate their BSS/OSS systems and network infrastructure to more modern solutions to introduce end-to-end automation and support the new use cases derived from the 5G adoption and transport network slices. In general, there is a joint agreement on making this transition to an architecture defined by programmable interfaces and standard protocols. Hence, this paper uses the iFusion architecture to control and program the network infrastructure. The work presents an experimental validation of the network slicing instantiation in an IP/Optical environment using a set of standard protocols and interfaces. The work provides results of the creation, modification and deletion of the network slices. Furthermore, it demonstrates the usage of standard communication protocols (Netconf and Restconf) in combination with standard YANG data models.


Sign in / Sign up

Export Citation Format

Share Document