High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging

2004 ◽  
Vol 29 (19) ◽  
pp. 2249 ◽  
Author(s):  
J. Requejo-Isidro ◽  
J. McGinty ◽  
I. Munro ◽  
D. S. Elson ◽  
N. P. Galletly ◽  
...  
Author(s):  
D.S. Elson ◽  
J. Requejo-Isidro ◽  
I. Munro ◽  
J. McGinty ◽  
C.W. Dunsby ◽  
...  

2020 ◽  
Author(s):  
V. Zickus ◽  
M.-L. Wu ◽  
K. Morimoto ◽  
V. Kapitany ◽  
A. Fatima ◽  
...  

Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a relatively large number of photons, hence slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based on a 0.5 Megapixel resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with acquisition rates up to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial neural network with 1000-fold improvement in processing times compared to standard least squares fitting techniques. We utilised our system to image HT1080 – human fibrosarcoma cell line as well as Convallaria. The results show promise for real-time FLIM and a viable route towards multi-megapixel fluorescence lifetime images, with a proof-of-principle mosaic image shown with 3.6 megapixels.


Optica ◽  
2018 ◽  
Vol 5 (10) ◽  
pp. 1290 ◽  
Author(s):  
Andrew J. Bower ◽  
Joanne Li ◽  
Eric J. Chaney ◽  
Marina Marjanovic ◽  
Darold R. Spillman ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mikael T. Erkkilä ◽  
David Reichert ◽  
Johanna Gesperger ◽  
Barbara Kiesel ◽  
Thomas Roetzer ◽  
...  

AbstractMaximal safe tumor resection remains the key prognostic factor for improved prognosis in brain tumor patients. Despite 5-aminolevulinic acid-based fluorescence guidance the neurosurgeon is, however, not able to visualize most low-grade gliomas (LGG) and infiltration zone of high-grade gliomas (HGG). To overcome the need for a more sensitive visualization, we investigated the potential of macroscopic, wide-field fluorescence lifetime imaging of nicotinamide adenine dinucleotide (NADH) and protoporphyrin IX (PPIX) in selected human brain tumors. For future intraoperative use, the imaging system offered a square field of view of 11 mm at 250 mm free working distance. We performed imaging of tumor tissue ex vivo, including LGG and HGG as well as brain metastases obtained from 21 patients undergoing fluorescence-guided surgery. Half of all samples showed visible fluorescence during surgery, which was associated with significant increase in PPIX fluorescence lifetime. While the PPIX lifetime was significantly different between specific tumor tissue types, the NADH lifetimes did not differ significantly among them. However, mainly necrotic areas exhibited significantly lower NADH lifetimes compared to compact tumor in HGG. Our pilot study indicates that combined fluorescence lifetime imaging of NADH/PPIX represents a sensitive tool to visualize brain tumor tissue not detectable with conventional 5-ALA fluorescence.


2017 ◽  
Vol 8 (3) ◽  
pp. 1455 ◽  
Author(s):  
Taylor Hinsdale ◽  
Cory Olsovsky ◽  
Jose J. Rico-Jimenez ◽  
Kristen C. Maitland ◽  
Javier A. Jo ◽  
...  

2002 ◽  
Vol 49 (5-6) ◽  
pp. 985-995 ◽  
Author(s):  
D. S. Elson ◽  
J. Siegel ◽  
S. E. D. Webb ◽  
S. Lévêquefort ◽  
D. Parsons-Karavassilis ◽  
...  

2002 ◽  
Vol 73 (4) ◽  
pp. 1898-1907 ◽  
Author(s):  
S. E. D. Webb ◽  
Y. Gu ◽  
S. Lévêque-Fort ◽  
J. Siegel ◽  
M. J. Cole ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document