In-line hollow-core fiber-optic bandpass filter

2021 ◽  
Author(s):  
Xiong Daiqi ◽  
WU XU ◽  
Muhammad Rosdi Abu Hassan ◽  
Trivikramarao Gavara ◽  
Wonkeun Chang
Author(s):  
I. Hernández-Romano ◽  
S. Marrujo-García ◽  
M. Torres-Cisneros ◽  
D. Lopez-Cortes ◽  
D. A. May-Arrioja ◽  
...  

2021 ◽  
Vol 67 ◽  
pp. 102749
Author(s):  
Wenting Yang ◽  
Wei Wang ◽  
Haibin Chen ◽  
Xiongxing Zhang ◽  
Zilong Guo ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 318
Author(s):  
Chi Li ◽  
Meng Zhu ◽  
Peng Ji ◽  
Cong Xiong ◽  
Changrui Liao

A fiber optic whispering gallery mode (WGM) resonator was proposed and realized by integrating an inline polymer waveguide with a microsphere mounted on it. The polymer waveguide with a diameter of 1 μm was printed with femtosecond laser-assisted multiphoton polymerization in a section of a grooved hollow-core fiber, which was sandwiched between two single-mode fibers. Two WGW resonators assembled with microspheres of different sizes were prepared. The transmission spectra of those stimulated WGMs were investigated both in simulation and experimentally. The temperature response of the resonators was particularly studied, and a linear sensitivity of −593 pm/°C was achieved from 20 °C to 100 °C.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3763 ◽  
Author(s):  
Luis A. Herrera-Piad ◽  
Iván Hernández-Romano ◽  
Daniel A. May-Arrioja ◽  
Vladimir P. Minkovich ◽  
Miguel Torres-Cisneros

In this paper, we propose and experimentally demonstrate a simple technique to enhance the curvature sensitivity of a bending fiber optic sensor based on anti-resonant reflecting optical waveguide (ARROW) guidance. The sensing structure is assembled by splicing a segment of capillary hollow-core fiber (CHCF) between two single-mode fibers (SMF), and the device is set on a steel sheet for measuring different curvatures. Without any surface treatment, the ARROW sensor exhibits a curvature sensitivity of 1.6 dB/m−1 in a curvature range from 0 to 2.14 m−1. By carefully coating half of the CHCF length with polydimethylsiloxane (PDMS), the curvature sensitivity of the ARROW sensor is enhanced to −5.62 dB/m−1, as well as an increment in the curvature range (from 0 to 2.68 m−1). Moreover, the covered device exhibits a low-temperature sensitivity (0.038 dB/°C), meaning that temperature fluctuations do not compromise the bending fiber optic sensor operation. The ARROW sensor fabricated with this technique has high sensitivity and a wide range for curvature measurements, with the advantage that the technique is cost-effective and easy to implement. All these features make this technique appealing for real sensing applications, such as structural health monitoring.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 234
Author(s):  
Zhe Zhang ◽  
Baijie Xu ◽  
Min Zhou ◽  
Weijia Bao ◽  
Xizhen Xu ◽  
...  

Over decades, fiber-optic temperature sensors based on conventional single-mode fibers (SMF) have been demonstrated with either high linearity and stability in a limited temperature region or poor linearity and thermal hysteresis in a high-temperature measurement range. For high-temperature measurements, isothermal annealing is typically necessary for the fiber-optic sensors, aiming at releasing the residual stress, eliminating the thermal hysteresis and, thus, improving the high-temperature measurement linearity and stability. In this article, an annealing-free fiber-optic high-temperature (1100 °C) sensor based on a diaphragm-free hollow-core fiber (HCF) Fabry-Perot interferometer (FPI) is proposed and experimentally demonstrated. The proposed sensor exhibits an excellent thermal stability and linearity (R2 > 0.99 in a 100–1100 °C range) without the need for high-temperature annealing. The proposed sensor is extremely simple in preparation, and the annealing-free property can reduce the cost of sensor production significantly, which is promising in mass production and industry applications.


Sign in / Sign up

Export Citation Format

Share Document