Spectral Laser Induced Fluorescence for standoff detection and classification of aerosolized biological threats

Author(s):  
Sylvie Buteau
2014 ◽  
Author(s):  
Anita Hausmann ◽  
Frank Duschek ◽  
Thomas Fischbach ◽  
Carsten Pargmann ◽  
Valeri Aleksejev ◽  
...  

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Frank Duschek ◽  
Lea Fellner ◽  
Florian Gebert ◽  
Karin Grünewald ◽  
Anja Köhntopp ◽  
...  

AbstractBiological hazardous substances such as certain fungi and bacteria represent a high risk for the broad public if fallen into wrong hands. Incidents based on bio-agents are commonly considered to have unpredictable and complex consequences for first responders and people. The impact of such an event can be minimized by an early and fast detection of hazards. The presented approach is based on optical standoff detection applying laser-induced fluorescence (LIF) on bacteria. The LIF bio-detector has been designed for outdoor operation at standoff distances from 20 m up to more than 100 m. The detector acquires LIF spectral data for two different excitation wavelengths (280 and 355 nm) which can be used to classify suspicious samples. A correlation analysis and spectral classification by a decision tree is used to discriminate between the measured samples. In order to demonstrate the capabilities of the system, suspensions of the low-risk and non-pathogenic bacteria


2021 ◽  
Author(s):  
Ming Xie ◽  
Yunpeng Jia ◽  
Ying Li ◽  
Xiaohua Cai ◽  
Kai Cao

Abstract Laser-induced fluorescence (LIF) is an effective, all-weather oil spill identification method that has been widely applied for oil spill monitoring. However, the distinguishability on oil types is seldom considered while selecting excitation wavelength. This study is intended to find the optimal excitation wavelength for fine-grained classification of refined oil pollutants using LIF by comparing the distinguishability of fluorometric spectra under various excitation wavelengths on some typical types of refined-oil samples. The results show that the fluorometric spectra of oil samples significantly vary under different excitation wavelengths, and the four types of oil applied in this study are most likely to be distinguished under the excitation wavelengths of 395 nm and 420 nm. This study is expected to improve the ability of oil types identification using LIF method without increasing time or other cost, and also provides theoretical basis for the development of portable LIF devices for oil spill identification.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2524 ◽  
Author(s):  
Lea Fellner ◽  
Marian Kraus ◽  
Florian Gebert ◽  
Arne Walter ◽  
Frank Duschek

Laser-induced fluorescence (LIF) is a well-established technique for monitoring chemical processes and for the standoff detection of biological substances because of its simple technical implementation and high sensitivity. Frequently, standoff LIF spectra from large molecules and bio-agents are only slightly structured and a gain of deeper information, such as classification, let alone identification, might become challenging. Improving the LIF technology by recording spectral and additionally time-resolved fluorescence emission, a significant gain of information can be achieved. This work presents results from a LIF based detection system and an analysis of the influence of time-resolved data on the classification accuracy. A multi-wavelength sub-nanosecond laser source is used to acquire spectral and time-resolved data from a standoff distance of 3.5 m. The data set contains data from seven different bacterial species and six types of oil. Classification is performed with a decision tree algorithm separately for spectral data, time-resolved data and the combination of both. The first findings show a valuable contribution of time-resolved fluorescence data to the classification of the investigated chemical and biological agents to their species level. Temporal and spectral data have been proven as partly complementary. The classification accuracy is increased from 86% for spectral data only to more than 92%.


2015 ◽  
Author(s):  
Thomas Fischbach ◽  
Frank Duschek ◽  
Anita Hausmann ◽  
Carsten Pargmann ◽  
Valeri Aleksejev ◽  
...  

2006 ◽  
Author(s):  
Sylvie Buteau ◽  
Jean-Robert Simard ◽  
Bernard Déry ◽  
Gilles Roy ◽  
Pierre Lahaie ◽  
...  

Author(s):  
Jian Yang ◽  
Wei Gong ◽  
Shuo Shi ◽  
Lin Du ◽  
Jia Sun ◽  
...  

Laser-induced fluorescence (LIF) served as an active technology has been widely used in many field, and it is closely related to excitation wavelength (EW). The objective of this investigation is to discuss the performance of different EWs of LIF LiDAR in identifying plant species. In this study, the 355, 460 and 556 nm lasers were utilized to excite the leaf fluorescence and the fluorescence spectra were measured by using the LIF LiDAR system built in the laboratory. Subsequently, the principal component analysis (PCA) with the help of support vector machine (SVM) was utilized to analyse fluorescence spectra. For the three EWs, the overall identification rates of the six plant species were 80 %, 83.3 % and 90 %. Experimental results demonstrated that 556 nm excitation light source is superior to 355 and 460 nm for the classification of the plant species for the same genus in this study. Thus, an appropriate excitation wavelength should be considered when the LIF LiDAR was utilized in the field of remote sensing based on the LIF technology.


2019 ◽  
Vol 11 (4) ◽  
pp. 99
Author(s):  
Michal Makowski ◽  
Paweł Piątek ◽  
Mateusz Grynkiewicz

The optical setup for holographic projection on the scatterings in fluorescent liquids is presented. Such media can be used as volumetric screens for near-eye holographic displays, solving the problem of speckle noise and very small exit pupils in existing setups. Three different oils (canola, olive and engine oil) with 532 nm laser and tonic water with 405 nm laser are used for projecting holographic fields, the quality of such images is investigated. The laser wavelength is cut out from acquisition on a camera and only filtered fluorescent light is observed. The best and brightest results are obtained with engine oil. Full Text: PDF ReferencesX. Li, C. P. Chen, H. Gao, et al. "Video-Rate Holographic Display Using Azo-Dye-Doped Liquid Crystal", Journal of display technology 10(6), 438-443 (2014). CrossRef X. Li, Z. Song, F. Li, X. Dong, W. Liu, "79‐3: Video‐rate Holographic Display in ZnSe layer‐assisted Quantum Dot Doped Liquid Crystal with High‐photorefractive Sensitivity", SID Symposium Digest of Technical Papers. Vol. 48. No. 1. 2017, CrossRef Sasaki, Takeo, et al. "Real-time dynamic hologram in photorefractive ferroelectric liquid crystal with two-beam coupling gain coefficient of over 800 cm–1 and response time of 8 ms", Applied Physics Letters 6(2) (2013) CrossRef N. Tsutsumi, K. Kinashi, A. Nomura, W. Sasaki, "Quickly Updatable Hologram Images Using Poly(N-vinyl Carbazole) (PVCz) Photorefractive Polymer Composite", Materials 5.8: 1477-1486 (2012) CrossRef M. Makowski, "Simple holographic projection in color", et al. Optics express 20.22: 25130-25136 (2012) CrossRef A. Yagi, M. Imura, Y, Kuroda, O. Oshiro, "360-degree fog projection interactive display", SIGGRAPH Asia 2011 Emerging Technologies. ACM, (2011) CrossRef C.H. Hsu, K. L. Hua, W. H. Cheng. "Omni-Tube: a low-cost portable omnidirectional interactive 3D display", SIGGRAPH Asia 2012 Posters. ACM, (2012) CrossRef Z. Zeng, H. Zheng, X. Lu, H. Gao, Y. Yu, "Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen", Opt Rev (2015) 22: 853 CrossRef I. Rakkolainen, "Feasible mid-air virtual reality with the immaterial projection screen technology", 3DTV-Conference, Tampere (2010) CrossRef S. Yanfeng, et al. "A multi-plane optical see-through holographic three-dimensional display for augmented reality applications", Optik 157: 190-196 (2018) CrossRef G. Li, D. Lee, Y. Jeong, J. Cho, B. Lee, "Holographic display for see-through augmented reality using mirror-lens holographic optical element", Opt. Lett. 41(11), 2486-2489 (2016) CrossRef C. L. Lin, Y. Z. Su, M. W. Hung, K. C. Huang "Augmented reality system", Proc. SPIE 7798, Applications of Digital Image Processing XXXIII, 779826 (2010) CrossRef A. Maimone, A. Georgiou, J. S. Kollin, "Holographic near-eye displays for virtual and augmented reality", ACM Trans. Graph. 36, 4, 1-16 (2017) CrossRef M. Quinten, Optical properties of nanoparticle systems: Mie and beyond (John Wiley & Sons 2010). CrossRef J.-W. Liaw, S.-W. Tsai, H.-H. Lin, T.-C. Yen, B.-R. Chen, "Wavelength-dependent Faraday–Tyndall effect on laser-induced microbubble in gold colloid", Journal of Quantitative Spectroscopy and Radiative Transfer 113(17), 2234-2242 (2012), CrossRef T. Mu et al. "Classification of edible oils using 532 nm laser-induced fluorescence combined with support vector machine", Anal. Methods 5, 6960 (2013) CrossRef T. Mu et al. "Classification of Motor Oil Using Laser-Induced Fluorescence and Phosphorescence", Analytical Letters 49:8, 1233-1239 (2015) CrossRef V. Rostampour, M. J. Lynch, "Quantitative Techniques To Discriminate Petroleum Oils Using LED-induced Fluorescence", WIT Transactions on Ecology and the Environment 95, 265 262 (2006) CrossRef F. Wyrowski and O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography", Opt. Soc. Am. A 5(7), 1058-1065 (1988) CrossRef


2019 ◽  
Vol 25 ◽  
pp. 128-135 ◽  
Author(s):  
Ahmed L. Abdel Gawad ◽  
Yasser El-Sharkawy ◽  
H.S. Ayoub ◽  
Ashraf F. El-Sherif ◽  
Mahmoud F. Hassan

Sign in / Sign up

Export Citation Format

Share Document