Speciation of Chromium via Laser-Induced Breakdown Spectroscopy of Ion Exchange Polymer Membranes

2005 ◽  
Vol 59 (2) ◽  
pp. 252-257 ◽  
Author(s):  
Christopher R. Dockery ◽  
Jack E. Pender ◽  
Scott R. Goode

A new method for the speciation of ng/mL concentrations of Cr(III) and Cr(VI) solutions with analysis by laser-induced breakdown spectroscopy (LIBS) is reported. Speciation is achieved by pre-concentration of the chromium onto commercially available cation exchange polymer membranes. Chromium(III) is removed directly by cation exchange; chromium(VI) in the filtrate is reduced to Cr(III) and concentrated onto a second cation exchange membrane, affording independent measurement of both species. Large volumes of waters containing Cr(III) and Cr(VI) can be concentrated onto the membranes and directly analyzed by laser-induced breakdown spectroscopy. The estimated limit of detection corresponds to 500 ng of Cr on the membrane: if a solution volume of 1 L is used, then the detection limit corresponds to a solution concentration of 0.5 ng/mL. Excellent separation of the chromium species is attained. Results show that overall method efficiencies range from 94–116% and are independent of the matrix. The influence of pH has been measured, and although Cr(VI) converts to Cr(III) in acidic solutions, the total Cr recoveries are not appreciably influenced by pH over the range of natural waters (4 to 9). In addition, speciation was performed in the presence of a number of different cations and showed that the method is robust in many different and complex matrices.

Author(s):  
Ji Chen ◽  
Kaiping Zhan ◽  
Qingzhou Li ◽  
Zhiyang Tang ◽  
Chenwei Zhu ◽  
...  

The quantification accuracy of laser-induced breakdown spectroscopy was limited due to matrix effects. In this work, a method named unsupervised-clustering-based quantification (UCQ) was proposed to reduce the matrix effects by...


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2930 ◽  
Author(s):  
Tingting Shen ◽  
Wenwen Kong ◽  
Fei Liu ◽  
Zhenghui Chen ◽  
Jingdong Yao ◽  
...  

Quick access to cadmium (Cd) contamination in lettuce is important to supervise the leafy vegetable growth environment and market. This study aims to apply laser-induced breakdown spectroscopy (LIBS) technology for fast determination of Cd content and diagnosis of the Cd contamination degree in lettuce. Emission lines Cd II 214.44 nm, Cd II 226.50 nm, and Cd I 228.80 nm were selected to establish the univariate analysis model. Multivariate analysis including partial least squares (PLS) regression, was used to establish Cd content calibration models, and PLS model based on 22 variables selected by genetic algorithm (GA) obtained the best performance with correlation coefficient in the prediction set Rp2 = 0.9716, limit of detection (LOD) = 1.7 mg/kg. K-Nearest Neighbors (KNN) and random forest (RF) were used to analyze Cd contamination degree, and RF model obtained the correct classification rate of 100% in prediction set. The preliminary results indicate LIBS coupled with chemometrics could be used as a fast, efficient and low-cost method to assess Cd contamination in the vegetable industry.


Author(s):  
Ziyu Yu ◽  
Shunchun Yao ◽  
Yuan Jiang ◽  
Weize Chen ◽  
Shuixiu Xu ◽  
...  

Laser-induced breakdown spectroscopy analysis of coal particle flow presents milder matrix effect compared with coal pellet.


Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 84 ◽  
Author(s):  
Ashwin P. Rao ◽  
Matthew T. Cook ◽  
Howard L. Hall ◽  
Michael B. Shattan

A hand-held laser-induced breakdown spectroscopy device was used to acquire spectral emission data from laser-induced plasmas created on the surface of cerium-gallium alloy samples with Ga concentrations ranging from 0–3 weight percent. Ionic and neutral emission lines of the two constituent elements were then extracted and used to generate calibration curves relating the emission line intensity ratios to the gallium concentration of the alloy. The Ga I 287.4-nm emission line was determined to be superior for the purposes of Ga detection and concentration determination. A limit of detection below 0.25% was achieved using a multivariate regression model of the Ga I 287.4-nm line ratio versus two separate Ce II emission lines. This LOD is considered a conservative estimation of the technique’s capability given the type of the calibration samples available and the low power (5 mJ per 1-ns pulse) and resolving power ( λ / Δ λ = 4000) of this hand-held device. Nonetheless, the utility of the technique is demonstrated via a detailed mapping analysis of the surface Ga distribution of a Ce-Ga sample, which reveals significant heterogeneity resulting from the sample production process.


2019 ◽  
Vol 74 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Daniel Diaz ◽  
Alejandro Molina ◽  
David W. Hahn

Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) were applied to the classification of LIBS spectra from gold ores prepared as pressed pellets from pulverized bulk samples. For each sample, 5000 single-shot LIBS spectra were obtained. Although the gold concentrations in the samples were as high as 7.7 µg/g, Au emission lines were not observed in most single-shot LIBS spectra, rendering the application of the usual ensemble-averaging approach for spectral processing to be infeasible. Instead, a PCA approach was utilized to analyze the collection of single-shot LIBS spectra. Two spectral ranges of 21 nm and 0.15 nm wide were considered, and LIBS variables (i.e., wavelengths) reduced to no more than three principal components. Single-shot spectra containing Au emission lines (positive spectra) were discriminated by PCA from those without the spectral feature (negative spectra) in a spectral range of less than 1 nm wide around the Au(I) 267.59 nm emission line. Assuming a discrete gold distribution at very low concentration, LIBS sampling of gold particles seemed unlikely; therefore, positive spectra were considered as data outliers. Detection of data outliers was possible using two PCA statistical parameters, i.e., sample residual and Mahalanobis distance. Results from such a classification were compared with a standard database created with positive spectra identified with a filtering algorithm that rejected spectra with an Au intensity below the smallest detectable analytical LIBS signal (i.e., below the LIBS limit of detection). The PCA approach successfully identified 100% of the data outliers when compared with the standard database. False identifications in the multivariate approach were attributed to variations in shot-to-shot intensity and the presence of interfering emission lines.


1996 ◽  
Vol 50 (7) ◽  
pp. 880-884 ◽  
Author(s):  
Andrew V. Pakhomov ◽  
William Nichols ◽  
Jacek Borysow

Time-resolved laser-induced breakdown spectroscopy was applied for quantitative measurement of lead content in concrete at levels down to 10 ppm. The breakdown was formed at the sample surface by a Q-switched ND:YAG laser operating at a 1.06-μm wavelength and a repetition rate of 10 Hz. Contamination levels were inferred from the ratio of the integrated emission line of lead to a known reference line of the matrix. The lead contamination can be determined on an absolute scale down to 10 ppm at an optimum delay time of 3.0 μs. These results were derived from analysis of the temporal evolution of the calibration function within a 0.1- to 19.0-μs time range. The calibration function exhibits no dependence on the incident laser pulse energy, which was varied from 250 to 400 mJ.


2014 ◽  
Vol 29 (8) ◽  
pp. 1432-1437 ◽  
Author(s):  
Chang Mao Li ◽  
Zhi Min Zou ◽  
Xin Yan Yang ◽  
Zhong Qi Hao ◽  
Lian Bo Guo ◽  
...  

The quantitative analysis of phosphorus in iron/steel in air atmosphere is considered a challenge for LIBS due to strong interference from the matrix.


2005 ◽  
Vol 59 (3) ◽  
pp. 348-353 ◽  
Author(s):  
A. J. Ball ◽  
V. Hohreiter ◽  
D. W. Hahn

Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Hα emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.


Sign in / Sign up

Export Citation Format

Share Document