Vacuum Ultraviolet Photoionization Mass Spectra and Cross-Sections for Volatile Organic Compounds at 10.5 eV

2007 ◽  
Vol 61 (8) ◽  
pp. 896-902 ◽  
Author(s):  
Nozomu Kanno ◽  
Kenichi Tonokura

Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied to the detection of volatile organic compounds (VOCs), including aromatic, chlorinated, and oxygenated compounds. Photoionization mass spectra of 23 VOCs were measured using SPI-TOFMS at 10.5 eV (118 nm). The limits of detection of VOCs using SPI-TOFMS at 10.5 eV were estimated to be a few ppbv. The mass spectra of 20 VOCs exhibit only the parent ion and its isotopes' signals. The ionization processes of the VOCs were discussed on the basis of the reaction enthalpies predicted by the quantum chemical calculations. Absolute photoionization cross-sections for 23 VOCs, including 12 newly measured VOCs, at 10.5 eV were determined in comparison to the reported absolute photoionization cross-section of NO.

2009 ◽  
Vol 9 (4) ◽  
pp. 17297-17333 ◽  
Author(s):  
B. Langford ◽  
E. Nemitz ◽  
E. House ◽  
G. J. Phillips ◽  
D. Famulari ◽  
...  

Abstract. Concentrations and fluxes of eight volatile organic compounds (VOCs) were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone) and 0.2–1.3 ppb for the aromatics (benzene, toluene and ethylbenzene). Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25°C it is estimated that more than half the isoprene observed in central London is of biogenic origin.


2020 ◽  
Author(s):  
Gareth J. Stewart ◽  
W. Joe F. Acton ◽  
Beth S. Nelson ◽  
Adam R. Vaughan ◽  
James R. Hopkins ◽  
...  

Abstract. 29 different fuel types used in residential dwellings in northern India were collected from across New Delhi (76 samples in total). Emission factors of a wide range of non-methane volatile organic compounds (NMVOCs) (192 compounds in total) were measured during controlled burning experiments using dual-channel gas chromatography with flame ionisation detection (DC-GD-FID), two-dimensional gas chromatography (GC×GC-FID), proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and solid-phase extraction two-dimensional gas chromatography with time-of-flight mass spectrometry (SPE-GC×GC-ToF-MS). 94 % quantification was achieved on average across all fuel types. The largest contributors to emissions from most fuel types were small non-aromatic oxygenated species, phenolics and furanics. The emission factors (in g kg−1) for total gas-phase NMVOCs were: fuel wood (18.7, 4.3–96.7), cow dung cake (62.0, 35.3–83.0), crop residue (37.9, 8.9–73.8), charcoal (5.4, 2.4–7.9), sawdust (72.4, 28.6–115.5), municipal solid waste (87.3, 56.6–119.1) and liquified petroleum gas (5.7, 1.9–9.8). The emission factors measured in this study allow for better characterisation, evaluation and understanding of the air quality impacts of residential solid fuel combustion in India.


Sign in / Sign up

Export Citation Format

Share Document