Nondestructive Determination of Areal Density and Tritium Content of Tritided Erbium Films with Beta-Excited X-rays

1973 ◽  
Vol 27 (6) ◽  
pp. 450-453 ◽  
Author(s):  
J. E. Pearson

The x-ray spectrum emitted from a tritided erbium film as a result of the beta decay is used to determine areal density and tritium content of the film. A Si (Li) detector and a dedicated minicomputer are used for detection, acquisition, and data reduction. The technique is suitable for areal densities of erbium from 0.01 mg/cm2 to as high as 10 mg/cm2. The occluded tritium can be measured from less than one to several hundred microliters. Precision is generally determined by counting errors and is typically less than 1% for a 5-min count while accuracy depends upon the empirical calibration technique.

1974 ◽  
Vol 28 (4) ◽  
pp. 358-361 ◽  
Author(s):  
John E. Pearson

The x-ray spectrum resulting from beta decay of an erbium tritide film is used to measure tritium content of the film. The areal density of the film is measured using differential emission techniques and is used to correct the measured x-ray intensity for self-absorption. The corrected intensity is linearly related to tritium content through an empirically derived calibration curve. The technique will measure tritium contents from less than one to several hundred micron liters. Repeatability is generally determined by counting errors and is typically 0.3% for a 5-min count while accuracy depends upon the empirical calibration technique. In principle, the technique is not limited to erbium tritide but can be extended to many uniformly radiating thin films.


Author(s):  
J N Chapman ◽  
W A P Nicholson

Energy dispersive x-ray microanalysis (EDX) is widely used for the quantitative determination of local composition in thin film specimens. Extraction of quantitative data is usually accomplished by relating the ratio of the number of atoms of two species A and B in the volume excited by the electron beam (nA/nB) to the corresponding ratio of detected characteristic photons (NA/NB) through the use of a k-factor. This leads to an expression of the form nA/nB = kAB NA/NB where kAB is a measure of the relative efficiency with which x-rays are generated and detected from the two species.Errors in thin film x-ray quantification can arise from uncertainties in both NA/NB and kAB. In addition to the inevitable statistical errors, particularly severe problems arise in accurately determining the former if (i) mass loss occurs during spectrum acquisition so that the composition changes as irradiation proceeds, (ii) the characteristic peak from one of the minority components of interest is overlapped by the much larger peak from a majority component, (iii) the measured ratio varies significantly with specimen thickness as a result of electron channeling, or (iv) varying absorption corrections are required due to photons generated at different points having to traverse different path lengths through specimens of irregular and unknown topography on their way to the detector.


2014 ◽  
Vol 92 (11) ◽  
pp. 1489-1493 ◽  
Author(s):  
P.V. Sreevidya ◽  
S.B. Gudennavar ◽  
Daisy Joseph ◽  
S.G. Bubbly

K shell X-rays of barium and thallium following internal conversion decay in Cs137 and Hg203, respectively, were detected using a Si(Li) X-ray detector coupled to PC-based 8k multichannel analyser employing the method suggested earlier by our group. The K shell X-ray intensity ratios and vacancy transfer probabilities for thallium and barium were calculated. The obtained results are compared with theoretical, semiempirical, and others’ experimental results obtained via photoionization as well as decay processes. The effects of beta decay and internal conversion on X-ray emission probabilities are discussed.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


The measurement of the intensity of an X-ray beam in absolute units is in theory most satisfactorily accomplished by a determination of its heating effect. The method, however, is attended by considerable experimental difficulties, so that its application is very limited, and in practice it is usual to replace it by a determination of the ionization produced when the beam is passed through a gas. To correlate the ionization with an absolute intensity requires a quantitative knowledge of the details of the interaction between the X-rays and the molecules concerned and of the ionization of the gas by the ejected electrons. It sometimes happens that the processes involved about which we know least are relatively unimportant, so that a fairly reliable correlation can be made; and much work has been done on the application of the ionization method to X-ray dosimetry. But in general a quantitative correlation between ionization and intensity is not possible. A further study of the ionization of gases by X-rays is therefore desirable; moreover it may be made to yield important information concerning the processes involved. The early development of the physics of X-rays contains many examples of this, and more recently an important contribution has been made by Stockmeyer. The events leading to the ionization of a heavy gas are exceedingly complicated, whereas in the light gases (hydrogen and helium) some of these events are absent or else occur to a negligible extent, so that the interpretation of experiments with the latter becomes simpler and more reliable. These gases are therefore specially worthy of study. Moreover, for them the application of quantum mechanics leads to the most definite results for comparison with experiment, and in particular permits of a direct test of some aspects of Dirac’s theory of recoil scattering. The ionization due to the gas itself is, however, very small, and may even be less than the secondary ionization due to electrons liberated from the chamber walls. The technique used in ionization measurements with heavy gases is therefore unsuitable. Hitherto the only attempt made to extend such measurements to light gases is an experiment carried out in 1915 on hydrogen by Shearer who, however, obtained very variable results and an ionization markedly smaller than that to be expected from recoil electrons alone. Moreover his experimental method is now open to criticism in view of our greater knowledge of X-rays, and in particular the fluorescent radiation used was of doubtful homogeneity. The present paper will describe a new technique suitable for quantitative measurements of the ionization produced by X-rays in light gases, and in another paper it will be applied to a re-investigation of hydrogen.


1926 ◽  
Vol 22 (5-6) ◽  
pp. 737
Author(s):  
I. Friedland

Arikhbaev (Vesti. Khir., 1926, book 17-18), having established the normal state of the lipolytic index in 30 people with various diseases and then proceeding to the determination of lipase in the blood of 9 various patients and 1 healthy subject exposed to irritating doses of X-ray rays on the adrenal gland, which caused its hyperfunction, finished his research by observing 5 patients with various forms of surgical tuberculosis, of whom three underwent simultaneous x-rays of the adrenal glands with subcutaneous injections of fish oil neutralized from fatty acids, one - only injections of neutralized fish oil and one - only an operational aid.


2008 ◽  
Vol 4 (S256) ◽  
pp. 20-29 ◽  
Author(s):  
Yaël Nazé

AbstractIn the study of stars, the high energy domain occupies a place of choice, since it is the only one able to directly probe the most violent phenomena: indeed, young pre-main sequence objects, hot massive stars, or X-ray binaries are best revealed in X-rays. However, previously available X-ray observatories often provided only crude information on individual objects in the Magellanic Clouds. The advent of the highly efficient X-ray facilities XMM-Newton and Chandra has now dramatically increased the sensitivity and the spatial resolution available to X-ray astronomers, thus enabling a fairly easy determination of the properties of individual sources in the LMC.


2017 ◽  
Vol 13 (S332) ◽  
pp. 418-424
Author(s):  
Marina G. Rachid ◽  
K. Faquine ◽  
S. Pilling

AbstractC2H4O2 isomers, methyl formate (HCOOCH3), acetic acid (CH3COOH) and glycoaldehyde (HOCH2CHO), have been detected in a lot of sources in ISM. However, their abundances are very different, with methyl formate much more abundant than the other two isomers. This fact may be related to the different destruction by ionizing radiation of these molecules. The goal of this work is experimentally study the photodissociation processes of methyl formate and acetic acid ices when exposed to broadband soft X-ray from 6 up to 2000 eV. The experiments were performed coupled to the SGM beamline in the Brazilian Synchrotron Light Source (LNLS/CNPEM) at Campinas, Brazil. The simulated astrophysical ices (12K) were monitored throughout the experiment using infrared vibrational spectroscopy. The analysis of processed ices allowed the determination of the effective destruction cross sections of the parent molecules as well as the effective formation cross section of daughter molecular species. The relative abundance between acetic acid and methyl formate (NCH3COOH/NHCOOCH3) in different astronomical scenarios and their column density evolution in the presence of X-rays were calculated and our results suggests that such radiation field can be one of the factors that explain the difference in the isomers C2H4O2 abundances. We also quantified the daugther species after the establishment of a chemical equilibrium in the samples.


Sign in / Sign up

Export Citation Format

Share Document